

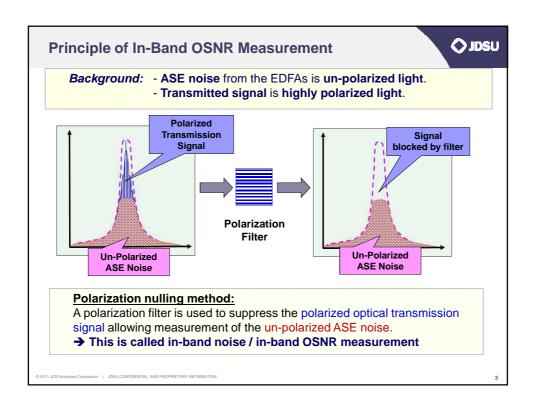
In-Band OSNR Measurement

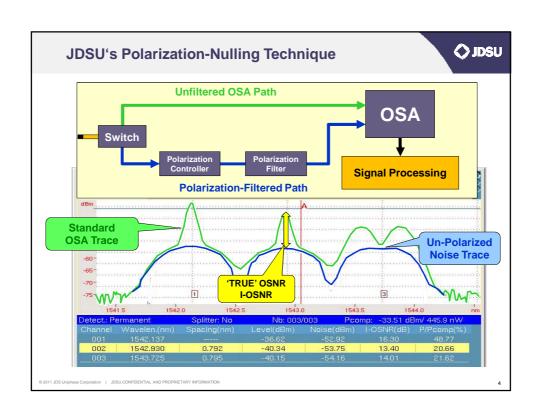
⊘ JDSU

In-Band OSNR measurement

- Measure the optical noise within the spectrum of a transmitted optical signal
 in-band noise
- Use the polarization nulling technique to suppress the signal and get access to the noise

Assumptions

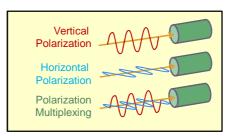

- Optical ASE noise from optical amplifiers is **un-polarized** light
- Laser-based optical transmitters emit highly polarized light
 - Conventional 10-Gb/s transmitters generate single polarized signals
 - Signals remain highly polarized during transmission
- Signal and noise may be distinguished by simple polarization analysis


Polarization nulling method

- The polarized optical signal is suppressed by an adjustable pol-filter
- Unpolarized ASE noise is not suppressed by polarization filter
- Spectrum of ASE noise can be measured by polarization filter and OSA
- In-band OSNR can be determined from the total signal power and the in-band noise spectral density

© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

2



Principle of Polarization Multiplexing

OSUL

Polarization Multiplexing

 Transmitter emits 2 data streams at the same wavelength but in orthogonal polarization states

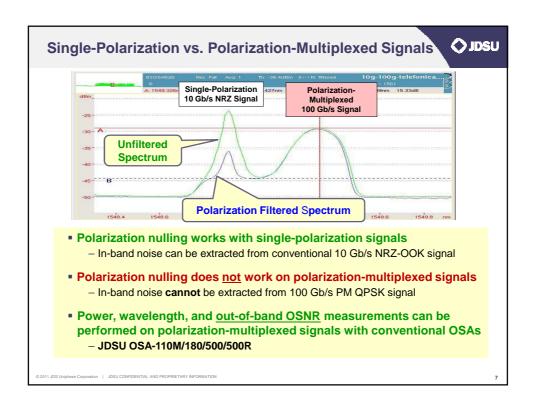
- Polarization multiplexing or polarization-division multiplexing (PDM)
 doubles the spectral efficiency of signal transmission by combining
 two orthogonally polarized signals of the same bit rate into the
 same wavelength channel.
- PDM is widely used for long-haul 100 Gb/s DWDM transmission (usually in combination with coherent detection).

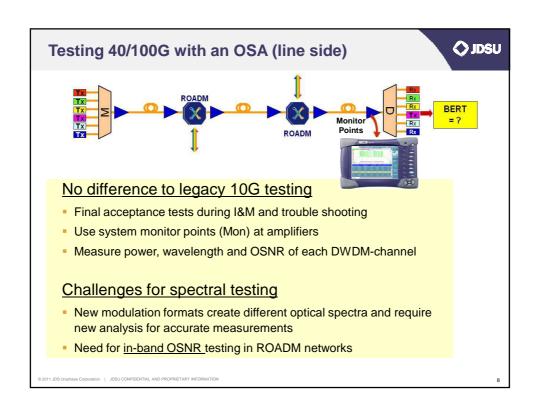
© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

5

Polarization Nulling of PDM Signals

♦ JDSU


- Transmitter emits 2 data streams at the same wavelength but in orthogonal polarization states
 - Polarization multiplexed signals are not highly polarized
 - They appear to be $\underline{\text{un-polarized}}$ when measured with a polarization analyzer
- Polarization filter cannot suppress polarization multiplexed signals
- Un-polarized ASE noise cannot be separated from signal


Polarization nulling technique does <u>not</u> work with polarization-multiplexed (PDM) signals

© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

_

Questions and Answers

- What are the basic OSA measurements in WDM systems ?
 - Measure ch-power, ch-wavelength and OSNR (=> OSA-110M, OSA-180/OSA-500)
- What are the measurement challenges in ROADM networks?
 - Standard out-of-band measurements provide wrong OSNR results due to filtered noise distribution induced from ROADM network elements
 - Requires in-band OSNR measurement (use of pol-nulling technique => OSA-500R)
- What are the measurement challenges in 40G networks ?
 - Using 40G data transmission at 50GHz channel spacing will create overlapping spectra. Standard out-of-band OSA measurements provide wrong OSNR results.
 - Requires in-band OSNR measurement (use of pol-nulling technique => OSA-500R)
- What are the measurement challenges in 100G networks?
 - 100G networks are using coherent transmission techniques with polarization multiplexed (PDM) modulation formats
 - PDM signals cannot be analyzed using polarization nulling techniques.
 - It is not possible to perform in-service in-band OSNR measurements!
 - In-band OSNR measurements can be performed out-of-service in a 2 step method:
 - 1. Perform WDM measurement with all channels activated
 - 2. Perform WDM channels with 100G PDM channels switched-off
 - 3. Measure the noise power inside switched-off channels and calculate in-band OSNR
- What about standard OSA measurements in 100G networks?
 - All standard measurements like ch-power, ch-wavelength and out-of-band OSNR can be measured with a standard OSA (=> OSA-110M, OSA-180/OSA-500)

© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

9

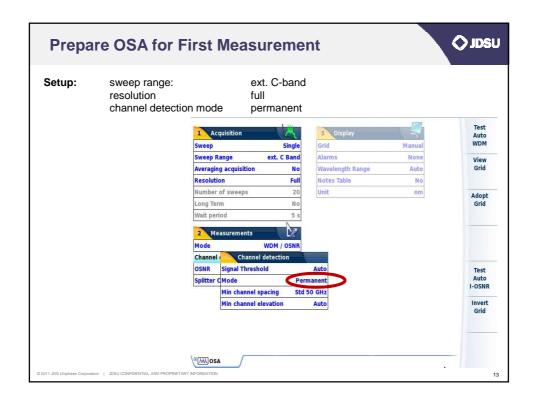
Conclusion

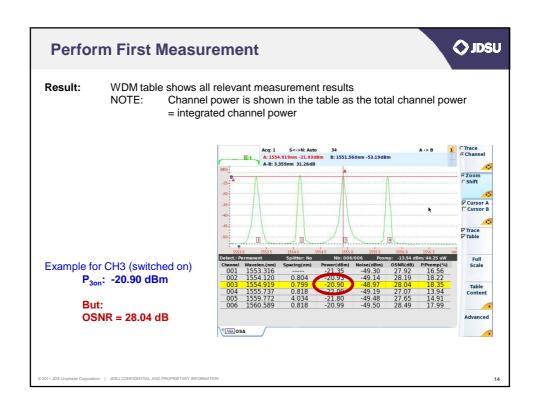
- High Speed Networking (e.g. 43G) is based on new modulation formats creating different spectra than legacy 10G signals
- OSA requires advanced analysis SW to accurately measure the optical channel power, channel wavelength and number of channels.
- Conventional spectrum analyzers do NOT provide accurate results
- All JDSU OSAs (OSA-110M/180/500/500R) have advanced analysis-SW to measure systems at 40G, 100G and above
- ROADM network topology and the use of high data rates at tig channel spacing (40G@50GHz ch-spg) require new methods to measure the 'TRUE' in-band OSNR.
- JDSU OSA-500R provides in-band noise measurement capability to measure the 'TRUE' OSNR in high speed networks with ROADMs or with 40/43G@50GHz ch-spcg
- In-band OSNR measurements in 100G networks using polarization multiplexing can only be performed by measuring the noise power when the 100G channel is switched-off

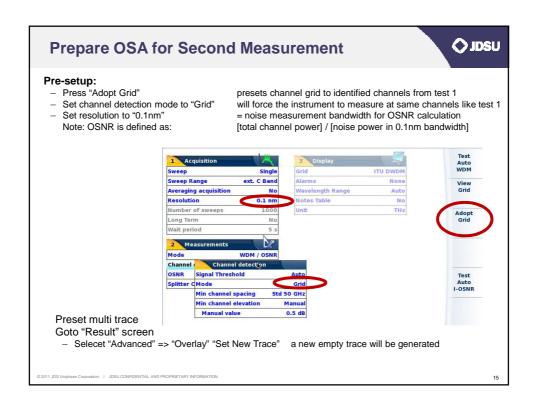
© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

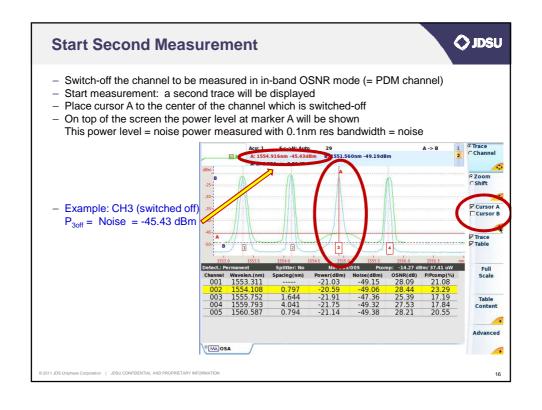
10

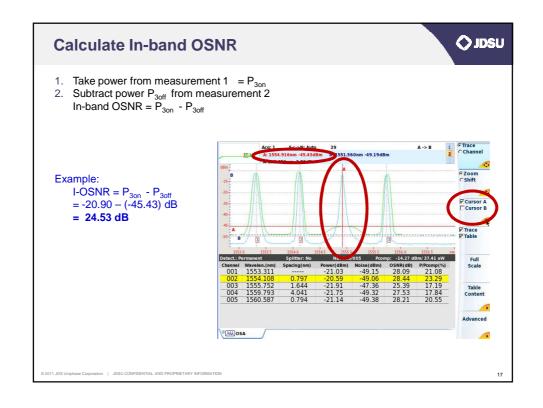
JDSU's On/Off-OSNR Method

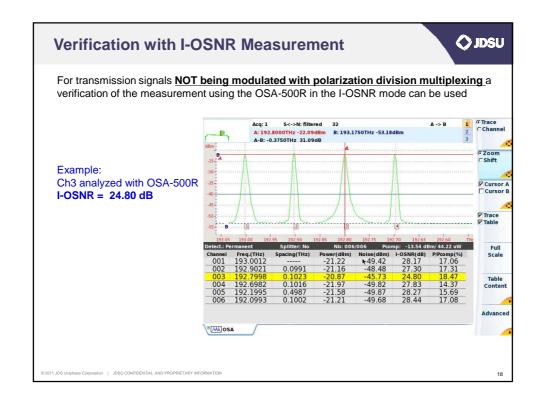

♦ JDSU


Challenge:


As it is not possible to use the polarization nulling technique to measure the inband OSNR in polarization-division multiplexed (PDM) systems, JDSU is using the On/Off-OSNR method


Principle of "On/Off-OSNR Measurement":


- The On/Off-OSNR method is based on measuring the noise power when the transmission channel is switched-off. This is a 2 step method:
 - 1. Switch-on all channels and perform a standard WDM measurement
 - Take a note of all channel power levels Pon
 - 2. Switch-off the channel carrying PDM signals and perform a second measurement
 - The channel power measured at the deactivated channel wavelength will indicate the in-band noise P_{off} = noise power • In-band OSNR: I-OSNR = $P_{\text{on}} - P_{\text{off}}$ (in dB)



Conclusion

- Using the On/Off-OSNR method it is possible to measure the in-band OSNR of all kind of signals including 100G with polarization-division multiplexing (PDM)
- The On/Off-OSNR method is applicable with all kind of JDSU OSAs: OSA-110M/180/500/500R (It is NOT necessary to use the in-band OSA 500R)
- The On/Off-OSNR method requires an intervention into the system as the PDM channel needs to be deactivated
- JDSU is working on an automation to support easy instrument setup and auto calculation of in-band OSNR at 100G systems using polarization-division multiplexing

© 2011 JDS Uniphase Corporation | JDSU CONFIDENTIAL AND PROPRIETARY INFORMATION

19

