

VIAVI Instrument Programming Tool

(VIP Tool™) User Guide

i

Contents

Introduction to the VIP Tool ... 1

Overview ... 1

Intended User .. 1

System Requirements ... 1

Installing VIP Tool ... 2

A Sample VIP Tool Directory Structure .. 2

Enabling the VIP Tool .. 2

Establishing an Ethernet Connection to the Instrument .. 4

Connection Types ... 4

Direct Connection .. 4

Network Connection .. 4

Configuring the Instrument’s Network Connection ... 5

Configuring the 8800 Series Connection .. 5

Configuring the 3550 Series Connection .. 6

Configuring the 3900 Series Connection .. 6

Setting up the Computer for Static IP Connection .. 8

Testing the Connection ... 9

The VIP Tool Workbook .. 10

The VIP Tool Ribbon ... 10

The Getting Started Sheet ... 10

The Getting Started Sheet Ribbon .. 10

The Setup Sheet ... 11

Setup Sheet Fields .. 12

The Setup Sheet Ribbon ... 14

The Script Sheet .. 17

The Script .. 17

The Script Sheet Ribbon ... 19

Script Sheet Ribbon Script Operations Group .. 21

Script Sheet Ribbon Script Debug Group ... 22

The Trace Data Sheet ... 29

The Trace Data Sheet Ribbon .. 30

The Results Data Sheet .. 32

Contents

ii

The Results Data Sheet Ribbon.. 33

Report Sheets ... 35

Report Sheet Rules ... 36

Tags .. 36

Saving Report Sheets ... 36

The Report Sheet Ribbon ... 36

The Version Sheet ... 42

The Version Sheet Ribbon .. 42

VIP Tool Programming Language Reference .. 43

Variables, Tags, and Cell Assignments ... 44

Variables ... 44

Tags .. 50

Working with Tags ... 50

Rules of Tag Use .. 53

Considerations for Assigning Values to Tags ... 53

Tag Syntax .. 55

Creating Tag Arrays .. 58

Math Functions .. 69

Math Function Command Column Syntax .. 69

Math Function Argument Column Syntax ... 70

Using Math Functions to Generate Arguments ... 71

Concatenation ... 72

Counters and Timers ... 73

Counter Functions ... 73

Timer Functions... 74

Goto and Subroutine Functions ... 76

Goto Function .. 76

Subroutine Function .. 77

Loops and Conditional Statements .. 78

For Next Loop.. 78

Do Loop ... 80

IF Statement .. 84

Flow Control, Messages and Forms .. 86

Delay Function .. 86

Schedule Function .. 87

Contents

iii

End Function ... 87

Custom Dynamic Message Box .. 88

Wait for Transmit On Dynamic Message Box ... 91

Wait for Transmit Off Dynamic Message Box ... 93

Wait for Audio Level Dynamic Message Box .. 95

Pause Message Box ... 97

Yes/No Selection Message Box .. 101

Applying the Result of Query_Yes_No to a Conditional Statement .. 103

Choice Message with One Button and Cancel ... 104

Choice Message with Two Buttons and Cancel .. 106

Two Choice Check Box Message with Cancel ... 111

Test Info Entry Form ... 114

Numerical Entry Form ... 116

Text Entry Form... 118

Message Positioning ... 119

Special Functions .. 121

Automated Find SINAD Function .. 121

Watts to dBm Calculator ... 126

dBm to Watts Calculator ... 127

Audio Gain/Loss In dB Calculator ... 128

Select A Cell for Viewing Function .. 129

Transfer Trace Data to Another Sheet .. 130

Clear Range of Cells in a Row .. 131

Beep Function ... 131

Time Function.. 132

Date Function .. 132

Close and Open Socket Functions ... 133

Report Tools .. 134

Define a Name for a Saved Report Command ... 134

Select a Report Sheet to Save Command .. 134

Save a Report as PDF Command... 135

Save a Report as CSV Command .. 136

Remove Previous Values From Tags Command.. 136

Debug and Notation Tools ... 137

Remark Symbol .. 137

/ Inactivate Command Symbol .. 137

Contents

iv

Breakpoint Function .. 138

Debug Print Function .. 139

Utility Commands .. 139

Copy Function ... 139

Create Tag Function ... 141

Appendix A: VIP Tool and Instrument RCI Resources ... 145

VIP Tool Resources ... 145

3900 Series RCI Manuals ... 145

8800 Series RCI Manual ... 145

3550 Series RCI Manual ... 145

Introduction to the VIP Tool

Page 1

Introduction to the VIP Tool

The VIAVI Instrument Programming Tool (VIP Tool) is an easy-to-use programming tool that is embedded into a

Microsoft® Excel workbook. The VIP Tool provides a large range of capabilities that allow a user to write simple

or complex programs in a scripting language designed to be conducive to radio test methodology. The VIP Tool

is an easy to use programming tool that is embedded into a Microsoft Excel workbook. The VIP Tool allows the

end user to automate operation of a VIAVI instrument by taking advantage of the RCI capabilities of the

instrument. Custom programs can be written to automate common functions or to create test capabilities that

only automation can provide.

Overview

At its heart, the VIP Tool is a means of communicating with the instrument over an Ethernet connection. In and

of itself, this capability is certainly not rare; many programs possess that capability. However, the ability to send

a remote command or receive query data is of limited use if there is no means to organize the commands into a

sequence, perform decisions based upon conditions, and collate test data in a storable form.

The VIP Tool uses a scripting language called the VIAVI Instrument Programming Language. This language

allows the operator to branch programs based on conditional statements, perform repetitive tasks through

looping, and create test reports with a sequence of commands placed within the spreadsheet. This capability

combines the power of a scripting language with Microsoft Excel that allows even an entry level technician to

create programs that can make his job more efficient and profitable.

Intended User

The VIP Tool is an easy-to-use tool that is intended for personnel with little or no programming experience.

System Requirements

Users require the following to use the VIP tool:

• Microsoft Excel is required to operate the VIP Tool.

• VIP Tool Option 847 installed on VIAVI instrument.

Installing VIP Tool

Page 2

Installing VIP Tool

Installing the VIP Tool is as simple as copying the VIP Tool workbook to your computer; the VIP Tool program is

embedded in the workbook. All that is needed to run VIP Tool is to have access to Microsoft Excel and a VIAVI

instrument with Option 847 installed. . No special drivers are required.

A Sample VIP Tool Directory Structure

The VIP Tool Setup sheet provides the means to configure paths for the following file types:

• Script Files

• Module Files

• PDF Report Files

• CSV Report Files (Please check the format between this bullet and the next. The space looks bigger)

• Export / Import Report Sheets

A sample setup may look something like this:

The VIP Tool workbook can be copied to the VIP Tool folder, and the sub folders will hold the Script, Module,

PDF and report template files.

Enabling the VIP Tool

The VIP Tool requires that macros be enabled in Microsoft Excel. Depending on the configuration of Excel, this

message may be displayed when the VIP Tool workbook is opened.

Installing VIP Tool

Page 3

If macros cannot be enabled in the spreadsheet, review the settings in Excel and Trust Center.

Select Macro Settings and ensure the settings allow macros. Select, at minimum ‘Disable all macros with

notification’. This setting causes Excel to notify the user that the workbook has macros and allows the operator

to enable them. If configuring macro settings has been disabled, contact your IT administrator.

Establishing an Ethernet Connection to the Instrument

Page 4

Establishing an Ethernet Connection to the Instrument

Before the VIP Tool can be used, the computer on which Excel is running must be connected to the VIAVI

instrument through an Ethernet connection. This section of the manual provides guidance on establishing and

verifying that a valid connection has been made between the computer and the instrument.

Connection Types

Direct Connection

There are a few different ways to connect the computer to the instrument. One method is a direct connection

from the computer to the instrument.

The direct connection consists of connecting an Ethernet cable from the computer to the instrument. Generally, a

common Ethernet cable can be used, though if the computer is an older model, it may be necessary to use a

crossover Ethernet cable to make the connection.

In most cases, a direct connection implies that a static IP connection will be used.

Network Connection

Another method of connection is that the computer is connected to a network or a switch, and the instrument is

also connected to the network or switch. Again, a common Ethernet cable can be used. to connect the

instrument to the network.

Establishing an Ethernet Connection to the Instrument

Page 5

In the case of a switch, the connection type will likely be a static IP connection, though more advanced switches

may have DHCP capability. In the case of a network connection, the connection type will most commonly be

DHCP.

Configuring the Instrument’s Network Connection

Configuring the 8800 Series Connection

The 8800 Series network configuration screen can be reached by selecting the Utilities tab, then selecting the

Software button from the dropdown menu, and selecting System from the sub menu that appears. Once in the

System Config menu, press the Remote tab.

The example above shows a Static IP configuration. The IP Address is set to 10.10.10.110. This IP address is

the same address to enter in the IP Address field on the VIP Tool Setup sheet.

If a DHCP connection is desired, set the Network Mode to ‘DHCP’. When the 8800 is connected to a network,

the network will assign an address in the IP address field.

The 8800 TCP/IP port, which is set automatically by the VIP Tool when the 88XX model is selected on the Setup

Sheet, is 9991.

NOTE: It should be noted that only one device at a time can be connected to port 9991 of the 8800. If
port 9991 is occupied by some other program or device, the VIP Tool will not be able to
connect to the 8800 until the port is released by the other device or program.

Establishing an Ethernet Connection to the Instrument

Page 6

Configuring the 3550 Series Connection

The 3550 Series network configuration screen can be reached by selecting the System tab, then selecting the

System Config button from the dropdown menu. Once in the System Config menu, press the Remote tab.

The example above is of a Static IP configuration. The IP Address is set to 10.10.10.112. That IP address is

the same address to enter in the IP Address field on the VIP Tool Setup sheet.

If a DHCP connection is desired, set the Network Mode to ‘DHCP’. When the 8800 is connected to a network,

the network will assign an address in the IP address field.

The 3550 TCP/IP port, which is set automatically by the VIP Tool when the 3550R model is selected on the

Setup Sheet, is 9991.

NOTE: It should be noted that only one device at a time can be connected to port 9991 of the 3550. If
port 9991 is occupied by some other program or device, the VIP Tool will not be able to
connect to the 3550 until the port is released by the other device or program.

Configuring the 3900 Series Connection

The 3900 Series setup involves selecting TCP/IP as the remote connection type, then setting up the network

settings.

To access the remote connection type setting, select the Utilities menu, then select Hardware Settings and

select Remote from the dropdown menu.

Establishing an Ethernet Connection to the Instrument

Page 7

Once on the Remote screen, set the Remote source field to ‘TCP/IP’.

NOTE: Note that the TCP/IP port on the 3900 Series is configurable. The default port number is 1234.
When connecting to the VIP Tool, verify that the entry in the Setup sheet ‘Port Number’ field is
set to match the number entered on this screen.

After setting the Remote source, set up the network connection. To access the network settings, select the

Utilities menu, then select Hardware Settings and select Network from the dropdown menu.

The example above is of a DHCP configuration. The IP Address is set to 10.200.152.13. That IP address is the

same address to enter in the IP Address field on the VIP Tool Setup sheet.

Establishing an Ethernet Connection to the Instrument

Page 8

NOTE: Please note that with some Ethernet routers and switches, it may be necessary to select a
Negotiation setting other than Auto, such as “100Base Half-Duplex” to avoid negotiation
conflicts with the Ethernet router or switch.

If a Static IP connection is desired, press the DHCP soft key so that DHCP is disabled. Enter the desired IP

address and subnet mask and, after entering the IP address, press the Validate Changes soft key.

The 3900 Series can host multiple connections on its TCP/IP port. The VIP Tool is capable of connecting to the

3900 Series even if another device or program is connected to the instrument.

Setting up the Computer for Static IP Connection

To use a direct connection with a Static IP connection, the computer must be configured to access the Static IP

of the instrument.

1. On the computer, access the Ethernet properties of the computer’s Ethernet card. Accessing this menu

may vary from computer to computer.

2. Once the Ethernet properties menu is open, select ‘Internet Protocol Version 4 (TCP/IPv4) field. After

selecting the field, press the Properties button.

3. Select ‘Use the following IP Address:’.

4. In the IP Address Field, enter the IP address that you wish to use. The instrument will need to share the

first three elements of the IP address, and have a different number on the fourth address element. For

Establishing an Ethernet Connection to the Instrument

Page 9

example, this computer’s Static IP is set to 10.10.10.100. Therefore, an instrument that is connected to it

can have the address 10.10.10.110.

5. Set the subnet mask to 255.255.0.0. Ensure the subnet mask on your instrument is set to this same

setting.

6. When finished, press the OK key on this menu, and the OK key on the first menu to close out the

operation.

Testing the Connection

Before connecting to the VIP Tool, it is recommended that the Ethernet connection to the instrument be verified.

A good way of verifying the connection is to see if the instrument can be pinged from the computer.

1. On the computer, open a command prompt.

2. In the command prompt, type ‘ping’ followed by the IP address the instrument is set to. For example, if

the instrument IP address is 10.10.10.104, then one would type: ping 10.10.10.104.

• If the connection is successful, then the text on the command window will appear like the example

above. Each ping receives a reply from the instrument, and no timeout messages appear. The

instrument and the VIP Tool will be able to communicate back and forth.

• If the connection is unsuccessful, then the text on the command window will appear like the example

above. No pings have been returned by the instrument; each request has timed out. This is indicative of

a communications failure between the computer and the instrument. The VIP Tool will not be able to

communicate with the instrument until successful communication has been established.

The VIP Tool Workbook

Page 10

The VIP Tool Workbook

The VIP Tool workbook contains the VIP Tool program and several embedded sheets that provide the

functionality of the tool. Additional sheets for creating reports or performing calculations can be added to and

removed from the VIP Tool workbook. The VIP Tool cannot interact with sheets that are not a part of the VIP

Tool workbook.

The workbook also contains the VIP Tool ribbon which provides a selection of buttons specific to the currently

selected sheet.

This section of the manual describes the purpose and functionality of each sheet and the ribbon buttons that

apply to each sheet.

The VIP Tool Ribbon

The VIP Tool ribbon is synchronized to the sheet selection. When a sheet is selected, the VIP Tool ribbon will

display the buttons relevant to the sheet that is selected.

The VIP Tool ribbon does not automatically re-synchronize if the VIP Tool is saved with a different name after

clicking on ‘File’ and ‘Save As’. The ribbon is still accessible but will not update to a newly selected sheet if a

different sheet is selected; instead, the VIP Tool ribbon will need to be manually selected. To restore

synchronization, close the newly ‘Saved As’ workbook, then re-open it. After re-opening the workbook, the

ribbon will synchronize with the different sheets as they are selected.

The Getting Started Sheet

The Getting Started sheet provides information about the VIP Tool workbook that the user can access directly

from the workbook.

The Getting Started Sheet Ribbon

Results Data Sheet Ribbon I/O Group

The Results Data sheet ribbon I/O group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup sheet that the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

The VIP Tool Workbook

Page 11

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered in the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

The Setup Sheet

The VIP Tool Setup sheet is used to set up the Ethernet socket that connects the VIP Tool to the instrument.

The Setup sheet is also used to set paths for saving various types of files, select which sheet is to be saved as a

report, what name to give the report, and to select whether a PDF report is saved in the background or is

opened when saved.

The VIP Tool Workbook

Page 12

Setup Sheet Fields

The Setup Sheet contains user editable fields that are used to set Ethernet communication parameters, to select

default file paths, and to determine whether a PDF file is automatically opened when saved either by a script

command or when using a ribbon button.

The ‘Select Model’ Field

The ‘Select Model’ field allows the user to select which model the VIP Tool will connect to. This field is a drop-

down menu that the provides a list of the instruments the VIP Tool can connect with. Selecting the model

automatically sets the ‘Port Address’ field setting to the appropriate port address of the selected instrument.

The ‘IP Address’ Field

The VIP Tool must have a valid socket connection to the instrument to communicate with the instrument. The ‘IP

Address’ field is used to point the VIP Tool to the IP address of the instrument it is connected to, therefore the

instrument IP address is entered in this field.

The ‘Port Number’ Field

Each VIAVI instrument has a port number that must be addressed to establish a TCP/IP connection with the

instrument through an Ethernet socket. The VIP Tool will determine the correct port number based upon the

model selected in the ‘Select Model’ field.

In the case of 39XX instruments (3901, 3902, 3920, and 3920B variants), the instrument defaults to the port

number of 1234. However, the 39XX instruments contain a feature that allows the user to set a port number

other than 1234 for TCP/IP communications. When ‘39XX’ is selected as the model, the VIP Tool will initially

default to a port number selection of 1234. However, if the 39XX instrument is set to a different port number, the

actual port number must be entered in the Port Number field in the Setup Sheet.

If the user-selected port number entry into the VIP Tool port number field is not the default value of 1234, then

the port number will be displayed in blue so that the operator can tell immediately if at-a-glance the port number

is not set up to a default number if changing instruments from one 39XX to a different 39XX series instrument.

The VIP Tool Workbook

Page 13

The Test Name Field

The VIP Tool automatically saves PDF and CSV report files with a date and time stamp. The VIP Tool scripting

language allows the user to programmatically assign a name to the report that is included with the date and time

stamp data. If the script does not assign a name to the report by using a specific command, the name will default

to the value entered in the Test Name field, along with the date and time stamp data. If a report is printed using

the ‘Save Report as PDF’ or ‘Save Report as CSV’ buttons found on report page ribbons, this name will be

added to the date and time stamp information when the report is saved using this method.

If a script is loaded with a test name command, VIP Tool will detect the command and place the name of the

report it sees in the script into this field.

The Report Sheet Field

The VIP Tool command language allows the programmer to specify which report sheet to save when the

command is executed. If no such command is in the script, the output of the report will default to the sheet

specified in this field.

The field provides the available saveable sheets found within the VIP Tool worksheet as a drop-down menu.

Only sheets that can be saved as a report are available on this drop-down menu.

The Open PDF Report on Save Field

The ‘Open PDF Report on Save Field’ determines if a PDF viewer is opened immediately upon a manual (by

pressing the ‘Save as PDF’ button) save operation or programmatic PDF save function is executed. The field

provides a dropdown ‘On’ or ‘Off’ selection. If ‘On’ is selected, the PDF report will be opened by the program on

the user’s computer that is used to view PDF files. If ‘’Off’ is selected, the PDF file will be saved, but not opened

immediately.

File Path Fields

Five fields on the Setup Sheet are used for setting file paths for various files imported and exported by the VIP

Tool. The purpose of the file path fields is to allow the user to create a directory structure that organizes the

various types of files used and generated by the VIP Tool. If the file path fields are left blank, the path of the files

will default to the path of the VIP Tool workbook itself.

The VIP Tool Workbook

Page 14

A path can be directly entered in a file path field, or the buttons in the Setup Sheet ribbon Path Operations group

can be used to select the path for a particular type of file using a file dialog.

Report PDF File Path

The Report PDF File Path field sets the default path for PDF reports that are generated either by script

commands or pressing the ‘Save Report as PDF’ button found on report pages.

Report CSV File Path

The Report CSV File Path field sets the default path for CSV formatted reports that are generated either by script

commands or pressing the ‘Save Report as CSV’ button found on report pages.

Script File Path

The Script File Path field sets the default path for saving and loading Script files when using the ‘Save Script’

and ‘Load Script’ buttons found on the Script sheet.

Script Module File Path

The Script Module File Path field sets the default path for saving and loading Script module files when using the

‘Insert Module Here’ and ‘Save Selection as Module’ buttons found on the Script sheet.

Import / Export Field Sheet Path

The Import / Export File Sheet Path sets the path that a Report sheet is exported to when pressing the ‘Export

Sheet to XLS’ button found on report pages and sets the path for importing sheets when using the ‘Import XLS

Sheet’ button found on the Script sheet.

The Setup Sheet Ribbon

When the Setup Sheet is selected, the Setup Sheet ribbon is brought into focus. The Setup Sheet ribbon

contains functions specific to checking the Ethernet connection and for setting paths for the various files used

and produced by the VIP Tool. The Setup Sheet ribbon is divided into two groups:

• I/O

• Path Operations

The VIP Tool Workbook

Page 15

Setup Sheet Ribbon I/O Group

The Setup Sheet Ribbon I/O group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup Sheet where the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered in the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful connection is

displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute a script if there is not a valid

connection to the instrument.

Setup Sheet Path Operations Group

The Setup Sheet Path Operations Group contains a set of buttons that allow the user to set default paths for the

various files the VIP Tool uses to perform tests and save results.

Set PDF Report Path

Opens a file dialog and allows the user to set a default path for saved PDF files. The
selected path populates the ‘Report PDF File Path’ field.

The VIP Tool Workbook

Page 16

Pressing the ‘Set PDF Report Path’ button opens a dialog that allows the user to set the default path for PDF

reports that are generated either by script commands or pressing the ‘Save Report as PDF’ button found on

report pages. The path that is selected populates the Setup Sheet ‘Report PDF File Path’ field.

Set CSV Report Path

Opens a file dialog and allows the user to set a default path for saved CSV report files.
The selected path populates the ‘Report CSV File Path’ field.

Pressing the ‘Set CSV Report Path’ button opens a dialog that allows the user to set the default path for CSV

formatted reports that are generated either by script commands or pressing the ‘Save Report as CSV’ button

found on report pages. The path that is selected populates the Setup sheet ‘Report CSV File Path’ field.

Set Script Path

Opens a file dialog and allows the user to set a default path for saved script files. The
selected path populates the ‘Script File Path’ field.

Pressing the ‘Set Script Path’ button opens a dialog that allows the user to set the default path for saving and

loading Script files when using the ‘Save Script’ and ‘Load Script’ buttons found on the Script sheet. The path

that is selected populates the Setup Sheet ‘Script File Path’ field.

Set Select Script Module Path

Opens a file dialog and allows the user to set a default path for saved script module
files. The selected path populates the ‘Script Module File Path’ field.

Pressing the ‘Set Select Script Module Path’ button opens a dialog that allows the user to set the default path for

saving and loading Script module files when using the ‘Insert Module Here’ and ‘Save Selection as Module’

buttons found on the Script sheet. The path that is selected populates the Setup Sheet ‘Script Module File Path’

field.

Set Sheet Import / Export Path

Opens a file dialog and allows the user to set a default path for importing and
exporting saved report sheets. The selected path populates the ‘Import / Export Sheet
Path’ field.

Pressing the ‘Set Sheet Import / Export’ button opens a dialog that allows the user to set the default path for

exporting and importing saved Report sheets. This setting sets the path that a Report sheet is exported to when

pressing the ‘Export Sheet to XLS’ button found on report pages and sets the path for importing sheets when

using the ‘Import XLS Sheet’ button found on the Script sheet. The path that is selected populates the Setup

Sheet ‘Import / Export XLS Sheet’ field.

The VIP Tool Workbook

Page 17

The Script Sheet

The VIP Tool Script sheet is where all programming, edit and debug operations happen. It is the VIP Tool’s

programming environment. It is on this sheet that the script is built.

A script is a sequence of commands that perform the function desired by the programmer. In its simplest form, a

script can be a series of RCI commands sent to the instrument. However, in most applications it is desirable to

control the sequence of commands sent to the instrument, and it is also desirable to be able to record the

outcome or results of the operation programmed into the script. To organize the logical flow of the task, the VIP

Tool provides a scripting language that can be used in conjunction with functions built into Microsoft Excel to

realize the goal the script is meant to accomplish.

The Script

A script is the sequence of commands and arguments that are used to program the VIP Tool’s task. The VIP

Tool will automatically execute the selected row of a script, then move to the next row and execute that row. If

the ‘Run Script’ button is used to start script execution, the script will automatically start on row 2 of the Script

sheet.

The VIP Tool will continue to execute each line of a script until it encounters either a blank line, the keyword

END, or an error is detected either by the instrument, Excel, or the VIP Tool program.

A line in the script consists of the contents of the Command and Argument cells on a single row of the script

page. Therefore, a ‘line’ in a script is often referred to in this document as a ‘row’. If a script is executed while the

Script page is being viewed, the current row of execution will be highlighted in green, though sometimes the

script may move through the line so quickly, the green color will be so brief as to be invisible. The Script page

will automatically scroll to keep the current row of execution in focus.

A script or module can be stored and recalled to the Script sheet at a later time. A script or module file is simply

a text file that stores the contents of a script or a module. Certain characters are used by the script to store

information such as line indentation. A script or module text file can be viewed in any text editor.

Script vs. Module

Both scripts and modules are essentially the same thing: a series of commands that control the flow of a series

of tasks. The only differences between a script and a module are size and purpose. A script can be considered

the entire program used to accomplish a task. A module can be considered a part of a script that can be re-used

and inserted into other scripts. For example, the programmer may find portions of certain scripts contain identical

subroutines. A subroutine can be stored as a module and inserted into other scripts when that subroutine is

needed, saving time and reducing duplication of effort.

The VIP Tool Workbook

Page 18

Organization of the Script Sheet

The Script Sheet consists of four columns. Two columns, Command and Argument, allow user entry in order to

build a script. The remaining two columns, Reply and Info Message, are protected against user entry. These two

columns serve to provide feedback to the programmer as a script is executed.

Commands and Arguments

RCI commands and queries, as well as VIP Scripting Language keywords, will always require an entry into the

command column. Arguments may or may not be required, depending on the RCI command or the keywords.

The argument for any command is always placed in the Argument column on the same row as its command.

The Command Column

The command column cell for a row holds the command for the line operation. That command can be an RCI

command or query such as ‘*IDN?’, or it can be a VIP Scripting Language keyword or variable. If a command

does not require an argument, the argument column on the same row as the command can be blank.

Any command or keyword placed in a command column cell cannot contain a blank space. Remarks, which are

defined by the ‘#’ symbol, however, may contain spaces.

If a blank space in a command cell is detected by the VIP Tool during script execution, and the contents of the

cell are not a remark, the blank space will automatically be removed. If an RCI command that requires a

preceding colon is detected in a command column cell, the VIP Tool will automatically prepend the command

with a colon if the preceding colon is missing, thereby ensuring the instrument can process the command

properly.

If a command column cell is left blank and script operation steps to the blank column cell, script operation will

cease at that row.

The Argument Column

The argument column is used to complete the command structure if the command requires an argument. For

example, the RCI command :RF:Gen:Freq, which is used to set the RF generator frequency in a 3920B, would

be placed in the command column, and it must have the argument defining the frequency placed in the

corresponding cell of the argument column. The argument column can contain spaces, depending on the rules

of the argument being used for a particular command.

The Reply Column

A Reply Column cell will display any information generated by an RCI query or a VIP Tool Scripting Language

keyword on its row. The purpose of the Reply column is to provide feedback to the operator as the Script is

being programmed. The cells of the Reply Column are read-only; they are protected against entry by the

operator.

The VIP Tool Workbook

Page 19

The Info Message Column

An Info Message Column cell will display any information generated by the VIP Tool Programming Language

concerning the specific command executed on that row, if the command provides feedback information. For

example, the cell may provide information as to the value or destination of a variable.

The Info Message Column is also used to display error messages generated by the instrument, Excel or the VIP

Tool program.

VIP Tool Script Color Coding

The Script Sheet automatically color codes command and argument text based upon the function of the

command. The function of the color coding is to aid in reviewing and editing a script by providing a means to

distinguish between RCI commands, the VIP Tool scripting commands, remarks, and disabled commands.

RCI commands, which are transmitted to the instrument through the Ethernet connection appear in a black font.

The VIP Tool scripting keywords are displayed in a blue font. If an RCI command or a scripting keyword is

disabled by the ‘/’ symbol placed in the command column, the command and argument cell content is displayed

in a gray font. If a row is denoted as a remark by placing the ‘#’ symbol in the command field, the command and

argument font color is green. And, finally, if a breakpoint is entered in the command field by using the keyword

‘break’, the command column font is red.

The Script Sheet Ribbon

When the Script Sheet is selected, the Script Sheet Ribbon is brought into focus.

Depending on the scaling settings of the computer the VIP Tool is displayed on, all the buttons will be displayed

at once, or there may be buttons collapsed on the right side of the display underneath a button that will expand

the collapsed buttons. The Script Sheet Ribbonribbon button graphics used in this manual were taken with the

The VIP Tool Workbook

Page 20

display scaling set at 100%. If the display scaling is set to a higher number, this may hide the buttons on the

right side of the ribbon.

The illustration above is of the Script sheet ribbon displayed on a computer that has the graphic scaling set at

175%. In this case, the Script Load/Save group buttons are only accessible after pressing the button labelled

“Script Load/Save”.

The Script sheet ribbon contains functions specific to creating, saving, restoring, and debugging a script. The

Script Sheet Ribbon is divided into five groups:

• I/O

• Script Operations

• Script Debug

• Row Edit

• Script Load / Save

Script Sheet Ribbon I/O Group

The Script sheet ribbon I/O group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if the VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool and on each sheet the functionality of the button is the same.

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered on the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

The VIP Tool Workbook

Page 21

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

Script Sheet Ribbon Script Operations Group

The Script Sheet Ribbon Script Operations group consists of two buttons, the ‘Run Script’ button and the ‘Abort

Execution’ button. These buttons also show up on user editable sheets, such as report sheets, sheets used to

store data, etc. On each sheet these buttons appear on the functionality of the buttons is the same.

Run Script

Executes the entire script, starting at row 2 of the script page.

The ‘Run Script’ button is the main button used to begin execution of a full script. Pressing the ‘Run Script’

button will direct the VIP Tool to begin on row 2 of the script and continue execution until a blank command

column cell is encountered or the ‘end’ command is encountered. It is of paramount importance when writing a

script and executing with the ‘Run Script’ button that a command or remark be present in row 2 of the script

page. If a command is in the command column of row 2, it can be active or inactive. If the command column of

row 2 is empty, pressing the ‘Run Script’ button will have no effect.

When the ‘Run Script’ button is pressed, the script starts executing with a ‘clean slate’. This means all previous

results and trace data are deleted from the VIP Tool work sheet. Any previous variables and variable values are

also cleared.

Abort Execution

When pressed while a script is running will stop execution at the current row.

The VIP Tool Workbook

Page 22

When the ‘Abort Execution’ button is pressed, script execution will immediately halt at its current operation.

When script execution is aborted, a message box will appear. Pressing the ‘OK’ button will clear this message

box.

The Info Message column will present the message ‘User interrupt occurred’ at the section of the script where

script operation halted.

NOTE: It should be noted that the Abort button will have no effect if a static message is currently
displayed. For example, if the ‘Pause’ command message is displayed, it must be closed
before the ‘Abort Execution’ button can be used.

Script Sheet Ribbon Script Debug Group

The Script Sheet Ribbon Script Debug group consists of a group of seven buttons that are provided as tools for

debugging a script. This group of buttons is available only on the Script Sheet. The functions provided by the

Script Debug group allow for running sections of a script instead of the entire script, for pausing the script at a

breakpoint, and for activating or inactivating single or multiple rows of the script.

Run Selection

Executes all contiguously selected rows of a script. Can run only one row or multiple
rows, but it will not execute any row not selected in a contiguous block of rows.

When pressed, the ‘Run Selection’ button will execute selected script rows. If only one row is selected by the

cursor, pressing ‘Run Selection’ will execute that one row. If multiple rows are selected, and there are no blank

spaces in the selected block of rows, pressing the ‘Run Selection’ button will execute all of the selected rows.

Thus, the ‘Run Selection’ button is ideal for testing if a single command or a series of commands in a range.

For example, after the programmer enters an RCI command, selecting that command and pressing ‘Run

Selection’ will run just that one command. At that point, if no error codes are generated, and the instrument

reacts to the command in the expected manner, the programmer can be assured that the entered command will

work when the script is executed.

The VIP Tool Workbook

Page 23

After selecting multiple contiguous lines and pressing the ‘Run Selection’ button, the programmer can determine

if a block of code will work as expected.

If non-contiguous rows (in other words, rows that have an empty row between them) are selected, pressing the

‘Run Selection’ button will result in only the first set of contiguous rows to be executed.

There are instances when pressing the ‘Run Selection’ button is not appropriate. For example, executing a

single line that directs the script to run a subroutine will not cause the subroutine to be run, simply because the

The VIP Tool Workbook

Page 24

subroutine is not a part of the selection. In that case, the ‘Run From Here’ or ‘Single Step From Here’ buttons

should be used.

Run From Here

Begins execution at the currently selected row and runs until a stop point is
encountered.

When the ‘Run From Here’ button is pressed, the VIP Tool will begin execution of the script sequence

automatically, beginning at the current cursor position instead of automatically returning to row 2 to run the

script. When the script reaches an end point, focus will return to the cursor position. This functionality is useful

for running sections of non-contiguous commands without starting the entire script over again. It is particularly

useful when used in conjunction with the break command. In the case of use with the break command, the script

will pause at the break command. To continue running the script, pressing the ‘Run From Here’ button will

cause the script to resume executing from the current break command position.

NOTE: It should be noted that starting a script from a specific position after the value of a variable has
been assigned may result in an error, as the variable will be empty. Therefore, if the section of
the script that will execute when the ‘Run From Here’ button is pressed contains variables, be
sure to start at a point before the variable is assigned a value.

Single Step from Here

Begins execution at the currently selected row and runs one line each time it is
pressed. Continues to step until a stop point is encountered.

When the ‘Single Step From Here’ button is pressed, the VIP Tool will begin execution of the script sequence

beginning at the current cursor position instead of automatically returning to row 2 to run the script. Pressing the

‘Single Step From Here’ button will execute only one row of the script each time it is pressed. When the script

reaches an end point, focus will return to the cursor position. This functionality is useful for running sections of

non-contiguous commands without starting the entire script over again. It provides the ability to evaluate each

step of the script as it happens. It is particularly useful when used in conjunction with the break command. In the

case of use with the break command, the script will pause at the break command. Pressing the ‘Single Step

From Here’ button will cause the script to resume on the next step from the break command, moving forward in

the script one row for each time the ‘Single Step From Here’ button is pressed. Pressing the ‘Run From Here’

button will cause the script to resume automatic execution of the script from the current position of the script

selected while using ‘Single Step From Here’.

The VIP Tool Workbook

Page 25

When the ‘Single Step From Here’ button is used, the background color of the row being executed will remain

blue while the command is being processed. Once the command has been fully executed, the background color

of the row will turn to green. It is important to remember that the script is still executing, and either the ‘Abort’

button must be pressed to end execution of the script, or the ‘Run From Here’ button must be pressed to resume

automatic execution of the script.

Starting a script from a specific position after the value of a variable has been assigned may result in an error, as

the variable will be empty. Therefore, if the section of the script that will execute when the ‘Single Step From

Here’ button is pressed contains variables, be sure to start at a point before the variable is assigned a value.

Toggle Selection Active / InActive

Acts upon a single or multiple selected rows. When pressed, if the contents of a
selected row are active, it will set that row to inactive. If the contents of a row are
inactive, it will set that row to active.

The ‘Toggle Selection Active / InActive’ button provides a means to inactivate or activate a row or multiple rows

in a selection. This control simply provides a means of inserting or removing the ‘/’ symbol in the command

column. This control is useful for disabling commands that are suspected of causing problems within a script. It

can also be used to activate or inactivate entire portions of a script when a certain task is required or not

required.

When the ‘/’ symbol is detected in a command column cell, the command in the cell is inactivated. The contents

of the command and argument columns will appear in a gray font when the symbol is detected in the command

column. The program will not step through the row, but will step over or ‘skip’ the row.

To activate or inactivate a specific row, select the row and press the ‘Toggle Selection Active / Inactive’ button.

To activate or inactivate multiple rows, select a range of rows and press the ‘Toggle Selection Active / Inactive’

button.

Insert Breakpoint Here

Creates a row at cursor position and inserts a breakpoint in the new row.

The ‘Insert Breakpoint Here’ button provides a means to easily insert the break keyword into any point within a

script.

The VIP Tool Workbook

Page 26

When a script encounters the break command, program operation pauses (but execution does not end; the

script program is still running) on that row. Pressing the ‘Run From Here’ or ‘Single Step’ buttons on the VIP Tool

ribbon will allow the script to resume, either in full automatic mode, or single step mode, respectively.

When the script is not running, selecting a row and pressing the ‘Insert Breakpoint Here’ button will insert a row

and place the break command in the new row. Break can also be typed into any command column row and will

provide the same outcome.

Remove All Breakpoints

Removes all breakpoints from the script and deletes the rows formerly occupied by the
breakpoint.

Pressing the ‘Remove All Breakpoints’ button will remove all instances of break on the Script Sheet and will

remove the row(s) formerly occupied by the break command(s).

Clear Results

Removes all information from the Script Sheet Reply and Info columns. Removes data
from the Results Data Sheet and removes Trace Data from the Trace Data Sheet.

Pressing the ‘Clear Results’ button removes all results from previous script operations to be removed from the

Script Sheet. In addition, all trace data are removed from the Trace Data Sheet and all results are removed from

the Results Data Sheet.

Script Sheet Ribbon Row Edit Group

The Script Sheet Ribbon Row Edit group consists of four buttons. This group of buttons is available only on the

Script Sheet. The functions provided by the Row Edit group replace functions that are inaccessible through

normal Excel operations because the Script Sheet is a locked sheet. The functions provided allow insertion of

blank rows, deletion of rows, and setting the indentation of the cell contents in the Command Column.

Increase Indent

Increases the indentation of Command column cell contents on all selected rows of the
Script Sheet each time the button is pressed.

The ‘Increase Indent’ button is used to indent contents of selected command column contents. The indent

function is used format the commands in the Command column so that the script can more easily be followed.

For example, indenting a For Next loop or a Do loop aids in understanding what the loop is doing within multiple

lines of a script. Because the Script Sheet is locked, the indent commands normally accessed within Excel are

inaccessible on the Script Sheet. Therefore, the ‘Increase Indent’ button is made available on the Script Sheet

Ribbon.

To indent a single command, select the command’s row with the cursor and press the ‘Increase Indent’ button.

To indent a range of commands, select the range of commands and press the ‘Increase Indent’ button. Each

time the ‘Increase Indent’ button is pressed, the indentation is increased by one.

The VIP Tool Workbook

Page 27

Decrease Indent

Decreases the indentation of Command column cell contents on all selected rows of
the Script Sheet each time the button is pressed.

The ‘Decrease Indent’ button is used to decrease the indentation of contents of selected Command column

contents. Because the Script Sheet is locked, the indent commands normally accessed within Excel are

inaccessible on the Script Sheet. Therefore, the ‘Decrease Indent’ button is made available on the Script Sheet

Ribbon.

To decrease the indentation of a single command, select the command’s row with the cursor and press the

‘Decrease Indent’ button. To decrease the indentation of a range of commands, select the range of commands

and press the ‘Decrease Indent’ button. Each time the ‘Decrease Indent’ button is pressed, the indentation is

decreased by one.

Insert Rows

Inserts single or multiple rows on selected rows of the Script Sheet.

Because the Script Sheet is locked, the insert row functions normally accessed within Excel are inaccessible on

the Script Sheet. Therefore, the ‘Insert Rows’ button is provided on the Script Ribbon.

To insert a single row within a script, select the row in which the new row is desired. Pressing the ‘Insert Rows’

button will insert a row at that location. To insert multiple rows, select the number of rows that are desired, in the

location of the script where the rows are needed. Pressing the ‘Insert Rows’ button will insert multiple rows at

that point without overwriting any of the script contents,

Delete Rows

Deletes a single or multiple rows on selected rows of the Script Sheet.

Because the Script Sheet is locked, the delete row functions normally accessed within Excel are inaccessible on

the Script Sheet. Therefore, the ‘Delete Rows’ button is provided on the Script Ribbon.

To delete a single row within a script, select the row to be deleted. Pressing the ‘Delete Rows’ button will delete

that a row and all of its contents. To delete multiple rows, select the rows to be deleted. Pressing the ‘Delete

Rows’ button will delete the multiple selected rows and their contents.

Script Sheet Script Load / Save Group

The Script Sheet Ribbon Row Edit Group consists of six buttons. This group of buttons is available only on the

Script Sheet. The functions provided by the Script Load / Save Group provide for saving and loading script files,

saving and loading module files, completely removing a script file, and for importing report sheets into the VIP

Tool workbook.

The VIP Tool Workbook

Page 28

Load Script

Opens a file dialog from which an entire script file can be loaded. Removes the current
script and replaces the current script with the new script.

Pressing the ‘Load Script’ button will open a file dialog that allows the user to select a script to load into the

Script Sheet. If a Script is selected, the current script and all results will be removed. The selected script will

replace the current script.

Save Script

Opens a file dialog to save the entire current script. Allows the script to be named and
stored for later recall.

Pressing the ‘Save Script’ button will open a file dialog that allows the user to select a path and name for the

current script. The script is then stored as a ‘.txt’ ASCII text file in the selected path.

Insert Module Here

Opens a file dialog to select a script module. Creates rows and inserts the selected
module at the current position of the cursor on the Script page.

A module is simply a small snippet of script that can be added to a larger script. The module may contain

commands that are common to different scripts, such as certain subroutines or blocks of RCI commands. The

‘Insert Module Here’ button is used to insert the module at the desired location.

To use the ‘Insert Module Here’ button, select the desired row in which to insert the module, then press the

‘Insert Module Here’ button. A file dialog will open allowing the user to select the specific module to insert. The

VIP Tool will insert the module at cursor location, creating rows to place the module within the script without

overwriting any other rows in the script.

Save Selection as Module

Opens a file dialog to save the current selected rows to a module text file.

The ‘Save Selection as Module’ button allows the operator to select a range of commands and save them as a

module that can then be imported to other scripts. For example, there may be a subroutine that is common to

many scripts that the operator would like to make available when building script.

To use the ‘Save Selection as Module Button’, first select the range of rows that are to be saved. After selecting

the rows to save as a module, press the ‘Save Selection as Module Button’. A file dialog will open allowing the

user to assign the module a name and select the path that the module should be saved to. Modules are saved

as ‘txt’ ASCII text files.

The VIP Tool Workbook

Page 29

Remove Script

Clears results and removes the entire current script from the script page.

Pressing the ‘Remove Script’ button will cause the VIP Tool to remove the current script and delete all results

from the Script, Trace Data and Results Data Sheets.

Import XLS Sheet

Opens a file dialog and imports the selected Excel spreadsheet into the VIP Tool. The
VIP Tool assimilates any tags present on the imported sheet, provided the tags are
visible on the imported sheet.

The ‘Import XLS Sheet’ button is used to import XLS sheets into the VIP Tool workbook. When this button is

used, the VIP Tool internally registers the sheet as being part of the VIP Tool workbook and records the position

of any tags present on the imported sheet. This button is a counterpart to the ‘Export Sheet to XLS’ button found

on report pages present in the VIP Tool workbook.

When the ‘Import XLS Sheet’ button is pressed, a file dialog is opened allowing the user to select the sheet to

import. After the sheet is selected, the VIP Tool automatically switches to ‘show tags’ mode, scans the imported

sheet for tags, then switches back to the ‘hide tags’ mode after the sheet has been imported and scanned.

The Trace Data Sheet

Trace data is data returned from a specific trace query. Trace data consist of Comma Separated Values (CSV).

Trace data can consist of oscilloscope data, spectrum or channel analyzer data, or data from various graphs

such as Distribution or Power Over Time, as examples.

Trace data consist of two components: X Axis (horizontal) data, which can represent elements such as

frequency or time, depending on the type of trace, and Y Axis (vertical) data, which generally represent some

value of amplitude. When trace data is encountered by the program, the X axis and Y axis data are separated

into two separate rows on the Trace Data worksheet. The "upper" row of a pair of trace data rows will contain the

X axis values, and the "lower" row will contain the Y axis values. The trace data row pairs are separated from

preceding or succeeding trace data row pairs by a blank row.

The X axis data are separated into specific columns on the Trace Data worksheet:

• Column A contains the Date the trace data were requested from the instrument.

• Column B contains the Time the trace data were requested from the instrument.

• Column C contains the number of trace data elements returned (and therefore the number of trace data

columns on the worksheet).

• Column D contains the X axis designation, and horizontal units of the X axis data.

The VIP Tool Workbook

Page 30

• Column E is left blank. This makes it easier to select the trace data with the Ctrl-A key combination

provided by Excel.

• Columns F and higher contain the X axis trace data. The number of columns occupied by data is equal

to the value in Column C.

The Y axis data are separated into specific columns on the Trace Data worksheet:

• Column A contains the Date the trace data were requested from the instrument.

• Column B contains the Time the trace data were requested from the instrument.

• Column C contains the query command that was used to access the data.

• Column D contains the Y axis designation of the X axis data.

• Column E is left blank. This makes it easier to select the trace data with the Ctrl-A key combination

provided by Excel.

• Columns F and higher contain the Y axis trace data. The number of columns occupied by data is equal

to number of X data values.

Trace data are automatically erased each time a script or a selected sequence of commands is executed.

NOTE: Note that X data is generally returned by most RCI commands. When X data is not available
for a specific trace query, the program calculates the X data and inserts it into the Trace Data
worksheet.

In the rare event that X data alone is available through a query, the program ignores the data and does not store

it in the Trace Data worksheet when the query is sent as a command. When the Y data query is executed for the

function, the program will automatically send the X data query, and store the X data results with the Y data in the

format described above.

NOTE: Note that if the argument cell is populated with a variable, tag or cell assignment command to
redirect the output to Reply, then the trace data is not sent to the Trace Data sheet, but is
instead assigned to the variable, tag or cell assignment and the trace data will appear in the
reply column.

The Trace Data Sheet Ribbon

Trace Data Sheet Ribbon I/O Group

The Trace Data Sheet Ribbon I/O Group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if the VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The VIP Tool Workbook

Page 31

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup Sheet that the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered on the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

Trace Data Sheet Ribbon Script Operations Group

The Trace Data Sheet Ribbon Script Operations Group consists of two buttons, the ‘Run Script’ button and the

‘Abort Execution’ button.

Run Script

Executes the entire script, starting at row 2 of the script page.

The ‘Run Script’ button is the main button used to begin execution of a full script. Pressing the ‘Run Script’

button will direct the VIP Tool to begin on row 2 of the script and continue execution until a blank command

column cell is encountered or the ‘end’ command is encountered.

When the ‘Run Script’ button is pressed, the script starts executing with a ‘clear slate’. This means all previous

results and trace data are deleted from the VIP Tool work sheet. Any previous variables and variable values are

also cleared. If the script is programmed to output data to the currently viewed report sheet, the user can

observe the data updating on the report sheet as the script runs.

The VIP Tool Workbook

Page 32

Abort Execution

When pressed while a script is running will stop execution at the current row.

When the ‘Abort Execution’ button is pressed, script execution will immediately halt at its current operation.

When script execution is aborted, a message box will appear. Pressing the ‘OK’ button will clear this message

box.

Trace Data Sheet File Operations Group

The Trace Data Sheet Ribbon Script Operations Group consists of only one button, the ‘Export Trace to CSV’

button.

Export Trace to CSV

Opens a file dialog to save all trace data on the Trace Data Sheet to a CSV file.

Pressing the ‘Export Trace to CSV’ button opens a file dialog that allows the user to select a path and save all

trace data contained in the Trace Data sheet to an external CSV file.

NOTE: Note that the default path for this function is not the path defined in the ‘Report CSV File’ field
on the Setup Sheet.

The Results Data Sheet

Measurement reply data are the data returned by a query. On the script worksheet, the data is recorded in the

reply column. Measurement reply data, except for trace data, is also recorded on the results data sheet.

Argument data supplied by the info keyword will also be copied to the Results Data worksheet. Trace data is

treated as a separate category of reply data that are sent to the Trace Data worksheet.

Measurement reply data can consist of a single datum, or as several data elements, separated by commas

(termed Comma Separated Values or CSV). One function of the Results Data worksheet is to separate any CSV

into separate columns to make evaluating a particular datum in a CSV string an easier process.

The VIP Tool Workbook

Page 33

The data are separated out into specific columns on the Results Data worksheet:

• Column A contains the Date the data were requested from the instrument.

• Column B contains the Time the data were requested from the instrument.

• Column C contains the query command that was used to access the data.

• Column D will contain any argument that was used with the query.

• Column E will contain the first received datum. If the reply was a single datum, this will be the only

column containing reply data.

If the reply was CSV data, Column E will contain the first datum in the CSV string.

Columns F and onward will each contain a single datum from any received CSV string, in the order of the data in

the CSV string.

Following the reply data, Column E will contain the total time the script or selected commands took to complete.

If a trace query is sent, the data in Column E will indicate the number of points or pairs of data received by the

trace query. Some trace data contain additional status byte or fail byte information. If the trace data contain that

information, it will appear on the Results Data worksheet in addition to the number of points information.

Results data are automatically erased each time a script or a selected sequence of commands is executed.

The Results Data Sheet Ribbon

Results Data Sheet Ribbon I/O Group

The Results Data Sheet Ribbon I/O Group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if the VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup Sheet that the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

The VIP Tool Workbook

Page 34

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered on the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

Results Data Sheet Ribbon Script Operations Group

The Results Data Sheet Ribbon Script Operations Group consists of two buttons, the ‘Run Script’ button and the

‘Abort Execution’ button.

Run Script

Executes the entire script, starting at row 2 of the script page.

The ‘Run Script’ button is the main button used to begin execution of a full script. Pressing the ‘Run Script’

button will direct the VIP Tool to begin on row 2 of the script and continue execution until a blank command

column cell is encountered or the ‘end’ command is encountered.

When the ‘Run Script’ button is pressed, the script starts executing with a ‘clear slate’. This means all previous

results and trace data are deleted from the VIP Tool work sheet. Any previous variables and variable values are

also cleared. If the script is programmed to output data to the currently viewed report sheet, the user can

observe the data updating on the report sheet as the script runs.

The VIP Tool Workbook

Page 35

Abort Execution

When pressed while a script is running will stop execution at the current row.

When the ‘Abort Execution’ button is pressed, script execution will immediately halt at its current operation.

When script execution is aborted, a message box will appear. Pressing the ‘OK’ button will clear this message

box.

Results Data Sheet File Operations Group

The Results Data Sheet Ribbon Script Operations Group consists of only one button, the ‘Export Results to CSV’

button.

Export Results to CSV

Opens a file dialog to save all results data on the Results Data Sheet to a CSV file.

Pressing the ‘Export Results to CSV’ button opens a file dialog that allows the user to select a path and save all

results data contained in the Results Data Sheet to an external CSV file.

NOTE: Note that the default path for this function is not the path defined in the ‘Report CSV File’ field
on the Setup Sheet.

Report Sheets

A Report Sheet is any sheet in the VIP Tool workbook that is unlocked and available for full editing by Microsoft

Excel. The Report Sheet must be a tab within the VIP Tool workbook; the VIP Tool cannot interface with a sheet

that is not a part of the workbook. A Report Sheet can be used by the user to create reports using test data

generated by the script. A Report Sheet can also be used as a supplemental sheet used for performing

calculations on data generated by the script. Sheets that cannot be used as report sheets are the Getting

Started Sheet, the Script Sheet, the Version Sheet, the Results Data Sheet, and the Trace Data Sheet.

The VIP Tool workbook is delivered with two sample Report Sheets included. One sheet is named ‘Calc’ and

one sheet is named ‘Report’. These sheets are not write-protected and can be used or removed at the user’s

discretion.

The VIP Tool Workbook

Page 36

Report Sheet Rules

When adding and using a Report Sheet, these rules must be observed:

• A Report Sheet cannot be write-protected. If a sheet is write-protected, the VIP Tool cannot write to it.

Attempting to write to a write-protected sheet will result in an error.

• A Report Sheet can use any name except for the already present names of other sheets that make up

the VIP Tool (Getting Started, Setup, Script, Results Data, Trace Data, and Version). The name ‘Utils’ is

also reserved and cannot be used as the name of a new sheet.

Tags

Report Sheets have the capability of having tags assigned to them. Tags provide a means of organizing the data

generated by a script on the Report Sheet. When a value is assigned to a tag by the script, that value will appear

anywhere the tag has been placed on a single or multiple Report Sheets. Report Sheet Ribbons will always have

‘Show Tags’ and ‘Hide Tags’ buttons, which are used for assigning tags to a Report Sheet. Report Sheets can

be saved as a template, complete with tags, by pressing the ‘Export Sheet to XLS’ button on the Report Sheet

Ribbon.

Saving Report Sheets

Report Sheet Ribbons contain the ‘Save Report as PDF’ and ‘Save Report to CSV’ buttons for saving report

data as either a PDF file or a CSV worksheet. To use the ‘Save Report to PDF’ button, two special tags must

be present: the <beginsave> tag is placed in the upper left cell of the area to be saved to a PDF; the <endsave>

tag is placed in the lower right cell of the area to be saved to a PDF. The ‘Save Report to PDF’ function does not

require these tags to export the report data to CSV.

The Report Sheet Ribbon

When a Report Sheet is selected, the Report Sheet Ribbon is brought into focus. The Report Sheet Ribbon

contains functions specific to creating, saving, editing tags and exporting a Report Sheet template to a separate

worksheet. The Report Sheet Ribbon also provides controls for running and aborting a script. The Report Sheet

Ribbon is divided into four groups:

• I/O

• Script Operations

• Save Report

• Report Tools

The VIP Tool Workbook

Page 37

Report Sheet Ribbon I/O Group

The Report Sheet Ribbon I/O Group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if the VIP Tool has successfully connected to the
instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup Sheet that the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered on the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

Report Sheet Ribbon Script Operations Group

The Report Sheet Ribbon Script Operations Group consists of two buttons, the ‘Run Script’ button and the ‘Abort

Execution’ button.

The VIP Tool Workbook

Page 38

Run Script

Executes the entire script, starting at row 2 of the script page.

The ‘Run Script’ button is the main button used to begin execution of a full script. Pressing the ‘Run Script’

button will direct the VIP Tool to begin on row 2 of the script and continue execution until a blank command

column cell is encountered or the ‘end’ command is encountered.

When the ‘Run Script’ button is pressed, the script starts executing with a ‘clear slate’. This means all previous

results and trace data are deleted from the VIP Tool work sheet. Any previous variables and variable values are

also cleared. If the script is programmed to output data to the currently viewed report sheet, the user can

observe the data updating on the report sheet as the script runs.

Abort Execution

When pressed while a script is running will stop execution at the current row.

When the ‘Abort Execution’ button is pressed, script execution will immediately halt at its current operation.

When script execution is aborted, a message box will appear. Pressing the ‘OK’ button will clear this message

box.

Report Sheet Ribbon Save Report Group

The Report Sheet Ribbon Save Report Group consists of two buttons, the ‘Save Report as PDF’ button and the

‘Export Report to CSV’ button.

Save Report as PDF

Saves the area of the report page defined by the <beginsave> and <endsave> tags to
a PDF file.

If the report page has a <beginsave> and an <endsave> tag defining the upper left and lower right cells of the

print area, the ‘Save Report as PDF’ button can be used to save the currently viewed page as a PDF file. If the

currently selected Report Sheet does not contain the <beginsave> and <endsave> tags, the VIP Tool will

attempt to open the Report Sheet selected in the Setup Sheet ‘Report Sheet’ field. If the sheet designated in that

field also does not contain the <beginsave> and <endsave> tags, no PDF report will be saved, and a message

indicating that the VIP Tool could not locate the <beginsave> and <endsave> tags will be display.

The VIP Tool Workbook

Page 39

The PDF report will be saved to the path designated in the Setup Sheet ‘Report PDF File Path’ field. If there is

no designated path in that field, the PDF report will be saved to the same path the VIP Tool workbook is located

in. The PDF report name will always contain a time/date stamp of when the report was saved. If the ‘Test Name’

field of the Setup Sheet has a name entered in it, that name will be pre-pended to the report file name date/time

stamp.

If the ‘Open PDF Report on Save’ field of the Setup Sheet is set to ‘On’, then the PDF file will automatically be

opened by the program designated for viewing PDF files on the user’s computer.

Setting Up A Save Selection Area

The <beginsave> and <endsave> tags are used to designate the print area of the report sheet when it is saved

either by using the ‘Save Report to PDF’ button or programmatically saving the report using the script command.

This allows the user to define what part of a report sheet will appear on the saved PDF report.

Place the <beginsave> tag in the upper left cell of the report page area that is to be saved. Place the

<endsave> tag in the lower right cell of the report page area to be saved. The block of cells defined by these

two points will then be used as the selection area when saving the PDF report. The <beginsave> and

<endsave> tags are not required for exporting reports to the CSV format.

Export Report as CSV

Exports the contents of the report page in Comma Separated Value (CSV)
format to a separate file.

Pressing the ‘Export Report as CSV’ button will export the currently selected report page to a CSV file.

The VIP Tool Workbook

Page 40

The CSV report will be saved to the path designated in the Setup Sheet ‘Report CSV File Path’ field. If there is

no designated path in that field, the CSV report will be saved to the same path the VIP Tool workbook is located

in. The PDF report name will always contain a time/date stamp of when the report was saved. If the ‘Test Name’

field of the Setup Sheet has a name entered in it, that name will be pre-pended to the report file name date/time

stamp.

Report Sheet Ribbon Report Tools Group

The Report Sheet Ribbon Report Tools Group consists of three buttons, the ‘Show Tags’ button, the ‘Hide Tags’

button and the ‘Export Sheet to XLS’ button. These buttons address organizing Report Sheets using tags and

exporting a sheet template to an external file for use in other VIP Tool workbooks.

Show Tags

Places the VIP Tool worksheet into the ‘Show Tags’ mode. This mode is required for
entering and editing tags on a report sheet.

A Tag is a type of variable used by the VIP Tool. A Tag is a word enclosed in angle brackets, such as <mytag>,

for example. Tags are used in the VIP Tool as a means of easily transferring data generated by the script to a

report page. To enter Tags into a report page or to observe and edit Tags, the ‘Show Tags’ button needs to be

pressed to place the VIP Tool into the ‘Show Tags’ mode. When in the ‘Show Tags’ mode, the Tags in a report

page become visible. In this mode, Tags can be entered, deleted, copied to new locations, or moved. Once the

Tags are in the position desired by the user, the position of the Tag is recorded, and the Tag is hidden when the

‘Hide Tags’ button is pressed.

In the above example, the serial number of the instrument is displayed in Column E. In this case, the script was

used to send a *IDN? query, and the serial number field of the query response was assigned to the Tag

<serialnum>. On the right side of the example, the ‘Show Tags’ button has been pressed and the VIP Tool is in

the ‘Show Tags’ mode. Instead of showing the serial number of the instrument, the Tag that was used to assign

that value to the cell (<serialnum>) is displayed instead. At this point, the Tag can be copied, moved, or deleted.

Pressing ‘Hide Tags’ will remove the Tag from view, and the value assigned to the Tag will be restored at any

and every position the Tag was copied or moved to.

The VIP Tool Workbook

Page 41

Hide Tags

Places the VIP Tool into the ‘Hide Tags’ mode. Pressing the button automatically
saves all Tags present in the VIP Workbook.

Tags are used in the VIP Tool as a means of easily transferring data generated by the script to a report page

(see above ‘Show Tags’ description). The ‘Hide Tags’ button is used to disable the ‘Show Tags’ mode of the VIP

Tool. When the ‘Hide Tags’ button is pressed, the position of all Tags in the VIP Tool worksheet is recorded, and

the Tags are hidden from view. If a value was assigned to a Tag before the ‘Show Tags’ button was pressed,

pressing the ‘Hide Tags’ button will reassign the value to the Tag.

In the above example, the Tag the script assigns for the serial number of the instrument is displayed in Column

E. If the serial number value was present when the ‘Show Tags’ button was pressed, pressing the ‘Hide Tags’

button will restore the previous value. If there was no value present, or if the Tag was newly created while in the

‘Show Tags’ mode, pressing the ‘Hide Tags’ button will record the Tag value position and hide the Tag from

view.

NOTE: It should be noted that if the VIP Tool is in the ‘Show Tags’ mode when ‘Run Script’, ‘Run
Selection’, ‘Run From Here’ or ‘Single Step From Here’ buttons are pressed, the VIP Tool will
automatically implement the ‘Hide Tags’ function to prevent overwriting any displayed Tags.

Export Sheet to XLS

Exports report template complete with Tags to a separate Excel spreadsheet.

Pressing the ‘Export Sheet to XLS’ button will export the selected Report Sheet to the path specified in the Setup

Sheet ‘Import / Export Sheet Path’ field. If no path is specified in that field, then the current Report Sheet will be

exported to the path the VIP Tool workbook is located in. When the Report Sheet is exported, the VIP Tool is

placed in the ‘Show Tags’ mode before the sheet is exported, thus the exported sheet will have its Tags visible

when it is exported. This functionality allows the sheet to be imported, complete with Tags, into other copies of

the VIP Tool worksheet.

The VIP Tool Workbook

Page 42

The Version Sheet

The Version Sheet will contain the current version number and release date of the VIP Tool programmed

contained in the workbook. In addition, any changes from previous versions will be listed in this sheet.

The Version Sheet Ribbon

Results Data Sheet Ribbon I/O Group

The Results Data Sheet Ribbon I/O Group consists of only one button, the ‘Check Connection’ button.

Check Connection

Opens a socket and checks to see if the VIP Tool has successfully connected
to the instrument. Closes the socket after the check has completed.

The ‘Check Connection’ button is used to verify if the instrument is connected to the VIP Tool. This button shows

up on several different sheets of the VIP Tool, and on each sheet the functionality of the button is the same. It is

on the Setup Sheet that the VIP Tool is configured to communicate with the instrument through an Ethernet

socket.

‘Check Connection’ attempts to open a socket to the instrument, based on the settings entered on the Setup

Sheet. If a valid connection to the instrument is detected, a message indicating successful connection is

displayed:

If, however, the VIP Tool cannot communicate with the instrument, a message indicating unsuccessful

connection is displayed:

If the connection is unsuccessful, select the Setup Sheet and configure the model and IP address of the

instrument to establish a successful connection. The VIP Tool will not execute script commands if there is not a

valid connection to the instrument.

VIP Tool Programming Language Reference

Page 43

VIP Tool Programming Language Reference

The VIAVI Instrument Programming Language is used to organize, branch, debug and control the flow of a VIP

Tool script. The language also provides special functions that aid in the process of testing radios and other

devices.

The language provides for the use of variables and takes advantage of Microsoft Excel functions for storing data,

transferring data, and creating test reports.

A major feature of the language is the use of Tags to create and organize report data. Another feature is that the

language provides methods of interactively inputting numerical and alphanumerical data as the script runs.

This reference is divided up into several sections.

• Variables Tags and Cell Assignments

Different types of variables used in the language include variables, tags and cell assignments.

• Counters and Timers

The language provides counters and timers to control various elements of a script.

• Goto and Subroutine Functions

Goto and subroutine functions allow scripts to be organized and compact through reuse of code.

• Loops and Conditional Statements

Loops and conditional statements allow the flexibility of branching and iterative tasks.

• Flow Control, Messages and Forms

Flow control consists of keywords and messages and forms to introduce delays, pauses and data input

based upon user entry and detected signals from the instrument.

• Special Functions

Special functions consist of an automated SINAD test, calculators, and a means to control what the

operator can observe as a script runs.

• Report Tools

A set of commands that allow the script to programmatically save test data.

• Debug and Notation Tools

A set of symbols and commands that provide for remark notation, selectively disabling sections of a

script, break points and the ability to print the contents of variables, tags, and cell assignments for

debugging a script.

VIP Tool Programming Language Reference

Page 44

• Utilities

Commands that can be operated outside of a script for performing tag creation and copying cell data to

set up a test environment.

Variables, Tags, and Cell Assignments

The VIP Tool provides for the use of variables and variable arrays. All variables are global to the script – there is

no differentiation of local and global variables.

Variables

Variable Syntax

A variable is created by placing a variable name within square brackets. For example [myvariable] represents

the variable ‘myvariable’. The VIP Tool will recognize any word or number enclosed in brackets as a variable.

Variable names cannot use spaces or special characters other than the ‘_’ symbol (which is used to denote an

array of variables of the same base name). Variables are not case sensitive.

A variable can use the underscore ‘_’ symbol to designate an array of variables using the same base name. The

VIP Tool utilizes the various counter functions available for assigning values to an array. For example, the For

Next loop function has a built-in counter that increments or decrements with each step of the For Next loop. The

For Next counter uses the keyword ‘nextcount’. Creating a variable called [myvariable_nextcount] within a For

Next loop will create an array using ‘myvariable’ as the base name. For example, if the For Next loop counts

from 1 to 3, then placing a variable declaration of [myvariable_nextcount] within the loop will create the array

variables [myvariable_1], [myvariable_2] and [myvariable_3]. Other counters can be used to create arrays from a

base variable name. These techniques will be discussed later in this document.

Declaring Variables and Assigning Values

A variable is declared by assigning a value to the variable. The value held by a variable can be a number or text.

It is possible to concatenate two text variables. Mathematical functions including addition, subtraction,

multiplication, and division can be performed using two numerical variables.

When assigning a text value to a variable, it is recommended to enclose the text in double quotes, particularly if

there is a space in the text value. If the text variable is to be used as an argument to an RCI command that

requires quotes in the argument, the text must be enclosed in two sets of double quotes when assigning the

value to a variable.

Command Column Variables

A variable can be declared and assigned a value by placing the variable in the command column, followed by

the ‘=’ sign, and placing the value in the argument column.

In the above example, on row 2, the value of “This is a test” is assigned to the variable [mytextvariable].

VIP Tool Programming Language Reference

Page 45

NOTE: Note that in the command column, the ‘=’ sign follows the variable name. In the argument
column, the value “This is a test.” is enclosed in double quotations because it is a text value.
When a value is assigned to a variable, the Info Message column will display the uppercase
form of the variable name and the value assigned to the variable.

On row 3, the numerical value of 151.0125 is assigned to the variable [mynumbervalue]. Again, in the command

column, the ‘=’ sign follows the variable name. In the argument column, the value 151.0125 is placed without

double quotations because it is a numerical value.

Variable values can be reassigned at any time. On rows 4 and 5, each variable is reassigned a different value.

There are instances where double quotes may be required for a text value. For example, the 39xx instrument

command to load a system requires the argument to be enclosed in double quotations. Other examples may be

RCI commands that are used to load saved setups or pre-sets.

In the above example, the 39xx command to load the analog duplex system is:

:SYSTem:LOAD “Analog Duplex”

The variable [mysystem] is assigned the value of “Analog Duplex” complete with the double quotations. In order

to assign the value “Analog Duplex” including the double quotations, the argument column value for the variable

is enclosed in two sets of double quotations: “”Analog Duplex””. The Info Message column displays the actual

value assigned as “Analog Duplex”. On row 3, the variable is used as the argument to the :SYSTem:LOAD

command, so executing rows 2 and 3 will cause the 39xx instrument to load the Analog Duplex system.

Values can be passed from one variable to another. In the above example, on rows 2 and 3, the variables

[mynumber] and [mytext] are each assigned a value. On rows 4 and 5, the values held by these two variables

are passed to [myothernumber] and [myothertext] respectively.

Values can be passed to a variable from a tag or an Excel sheet cell using the Cell Assignment syntax. In the

above example, a report page has a tag called <serialnum> that is holding the value 297001040. On another

sheet within the workbook, called ‘examples’, cell D1 contains the value 202.0125.

On row 2, the value of the <serialnum> tag is assigned to the variable [myserialnumber]. On row 3, the value

held in cell D1 of a sheet called ‘examples’ is assigned to the variable [myfrequency].

VIP Tool Programming Language Reference

Page 46

Command Column Placeholder Variables

Certain VIAVI Instrument Programming Language commands provide the use of introducing variables into the

syntax of the command itself. These variables are referred to in this guide as ‘placeholder variables’. A

placeholder variable is denoted in the description of the command as being enclosed in curly brackets, such as

‘{variable}’. The variable syntax itself does not use curly brackets; the curly brackets are simply used as an

instrument to denote them in the descriptions provided in this guide.

Placeholder variables have a separate set of syntax rules. Because they only appear in the command column,

the variable name cannot have a space in it. The variable also cannot have an underscore “_” character in it.

Variables and tags can be used for placeholder variables. Cell assignments are not allowed for use as a

placeholder variable.

Argument Column Variables

A variable can be declared and assigned a value by placing the variable in the argument column and using an

RCI query to retrieve the data to be assigned to the variable. In this case, the variable name is followed by some

form of the ‘=reply’ keyword.

The ‘=reply’ keyword is used to select the data from the reply that will be assigned to the variable. This structure

is used so that the desired value can be retrieved from a reply that has multiple data in the Comma Separated

Value (CSV) format when returned by the instrument.

A common example of such a reply would be the response to the query ‘*IDN?’. The ‘*IDN?’ query returns data

such as manufacturer, model number, serial number, and software version of the instrument in the CSV format.

The ‘=reply’ keyword allows the user to select which of those data elements is to be assigned to the variable.

When the ‘=reply’ keyword contains a number, that number is used to select which element of the CSV response

is to be assigned to the variable. For example, the response of a ‘*IDN?’ query will be structured as some

variation of this example:

Following the ‘=Reply’ keyword with a number will select the field to be stored by the variable, in the order the

field appears in the response, starting at 1.

VIP Tool Programming Language Reference

Page 47

In the example above, ‘=Reply1’ will assign the variable the name ‘AEROFLEX’, ‘=Reply2’ will assign the

variable the model number ‘3902’, ‘=Reply3’ will assign the variable the serial number ‘297001040’, ‘=Reply4’

will assign the variable the software version’3.7.8.2’, and ‘=Reply5’ will assign the variable the hardware version

‘2’. If no number follows the ‘=Reply’ keyword, the entire string will be assigned to the variable. For responses

that contain only one field (in other words, not a multi-field CSV string), then ‘=Reply’ must be used.

The number range of the ‘=Reply’ keyword is 1 through 8, so, for example, ‘=Reply8’ is supported, but ‘=Reply9’

is not supported. The ‘=Reply’ keyword is not case sensitive.

In the above illustration, the manufacturer name field value is assigned to the variable ‘[manufacturer]’, the

model number field value is assigned to the variable ‘[model]’, the serial number field value is assigned to the

variable ‘[serialnum]’, the software version field value is assigned to the variable ‘[swver]’, and the hardware

version field value is assigned to the variable ‘[hwver]’. The entire string is assigned to the variable

‘[wholestring]’.

Query Arguments and Variables

In some cases, an instrument query may require an argument. For example, the 39xx instrument query for

broadband power uses the following syntax:

:FETCh:RF:ANALyzer:TRBPower? <units>

The query allows the user to specify the unit of measurement of the broadband power value by providing a units

argument with the query. The unit of measurement can be set to Watts, dBm, or dBW using ‘W’, ‘dBm’ or ‘W’

respectively. The response of the broadband power meter query is CSV formatted as follows:

<statusbyte>,<failbyte>,<avgcount>,<avg>

The power reading value to be assigned to the variable is in the <avg> field, which is the fourth field of the CSV

reply string, so the user will use ‘=Reply4’ to retrieve that value and assign it to the variable. In this case, the

units argument can be placed either before or after the “=Reply4” keyword.

VIP Tool Programming Language Reference

Page 48

In the above illustration, the variable ‘[pow]’ is assigned the power measurement using the broadband power

query. In row 2, ‘dBm’ is supplied as the query argument, so the dBm value of the measurement is retrieved and

assigned to ‘[pow]’. In row 3, ‘W’ is supplied as the query argument, so the Watts value of the power

measurement is retrieved and assigned to ‘[pow]’. In row 4, ‘dBW’ is supplied as the query argument, so the

dBW value of the measurement is retrieved and assigned to ‘[pow]’.

The same results will occur if the query argument is placed before the variable assignment in the argument

column.

Creating Variable Arrays

A variable array can be constructed by creating a base variable name followed by an underscore and a counter

name within the bracket. For example, ‘[myvariable_nextcount]’ will create the variable name followed by the

underscore and the current value of ‘nextcount’. So, if the current value of nextcount is 2 when the variable is

declared, the variable name will be [myvariable_2].

‘Nextcount’ is the name of the counter built into the For Next loop. There are seven different counters that can be

used to create variable arrays.

Counter Name Counter Information

nextcount Integer up or down counter available with each instance of a For Next Loop

docount Integer up counter available with each instance of a Do Loop

counter1 Autonomous decimal up or down counter

counter2 Autonomous decimal up or down counter

counter3 Autonomous decimal up or down counter

counter4 Autonomous decimal up or down counter

counter5 Autonomous decimal up or down counter

All counters but ‘docount’ can count up or down; ‘docount’ can only count up. All the counters can be assigned

arbitrary values. Counters 1 through 5 can be assigned integer or decimal values. When using counters 1

through 5 for creating variable array names, only integers can be used.

VIP Tool Programming Language Reference

Page 49

In the above example, a For Next loop is set to count from 1 to 5. For each iteration of the loop, a SINAD

measurement is taken on row 3. The argument for row 3 is ‘[sinad_nextcount]=reply4’. Each time the loop steps

to row 3, the SINAD measurement is taken, and ‘reply4’, which is the SINAD measurement taken from the return

string to the query, is assigned to ‘[sinad_nextcount]’. ‘Nextcount is the built-in counter for the For Next loop. Its

current count is assigned to the name of ‘[sinad_nextcount] to which the current SINAD reading is assigned. So,

on the first step, the variable is named ‘[sinad_1]’, which is assigned the current reading. On the second step,

the variable is named ‘[sinad_2]’, which is assigned the next current reading. This procedure is repeated from 1

to 5, the For Next range.

‘Print’ is a VIP Tool debugging keyword. Placing ‘print’ in the Command column and the name of a variable in

the Argument column will result in the Info Message column displaying the variable name and the value stored in

the variable.

After the For Next loop has run, on rows 6 through 10, ‘print’ is used to display each name of the variable array

created by the For Next loop and the value that was stored in each variable of the array.

In the above illustration, ‘docount’ is used to set the array number. By default, ‘docount’ increments to 1 on the

first iteration of a Do Loop and increments on each iteration of the loop. In this example, the Do Loop is set to

exit when ‘docount’ is equal to 5 on row 4.

The above example uses counter1 to set the array number. In this case, counter1 is set to a value of 4 before

the For Next loop starts. The ‘inc_counter1’ command on row 4 increments counter1 by the default value of 1

each time the For Next loop iterates. Counter1 is incremented by 1 before the first SINAD query is sent on row 5,

so the first array number will be 5. The For Next loop is set to iterate 5 times before the loop ends. Because the

counter1 value used for the array is incremented 5 times, the array number steps from 5 to 9 for the 5 iterations

of the loop. Thus, the first array name is ‘[sinad_5]’, the second array name is ‘[sinad_6]’ and so forth until the

terminal count of the For Next loop, which sets the last array name to ‘[sinad_9]’.

VIP Tool Programming Language Reference

Page 50

Variable as Argument for RCI Command

A variable can be used to hold the argument for an RCI command.

In this example, row 2 sends a query for the RF frequency counter reading of a 39xx series instrument. The

value of the frequency counter is assigned to the variable ‘[rf_freq]’ in the argument column of row 2.

On row 3, the command to set the RF generator frequency uses the ‘[rf_freq]’ variable value to set the RF

generator to the same frequency as the value read from the frequency counter on row 2.

NOTE: It should be noted that a variable cannot hold an RCI command or query for use in the
command column.

Tags

The VIP Tool uses a system of tags to transfer values efficiently between the Script Sheet and Report Sheets.

Tags are particularly useful for building test result reports. When using tags, the programmer does not have to

use the script to designate which specific sheet and cell number to send a value to but can instead assign the

value to a tag and the VIP Tool will transfer the value to any cell that is assigned that tag name. Tags can be

freely moved around to arrange data on a report sheet without having to change procedures in the script.

A <tag> is a type of variable that broadcasts its value to all other tags sharing the same tag name. In a sense, a

<tag> is a variable that is global to the entire VIP Tool workbook, whereas a [variable] is local to the Script

Sheet.

A tag is defined as a tag name enclosed in angle brackets such as <mytag>. The value of a tag can be assigned

from the command column with a specific form of syntax, or from the argument column using a different form of

syntax. The value of a tag can be entered manually as well. Tag functionality is only available on sheets other

than Getting Started, Setup, Trace Data, Results Data, and Version. Tag values can be assigned by direct entry,

but only running a script will procedurally assign and read values of tags on other sheets.

Working with Tags

A tag is created by placing a variable name within angle brackets. For example, <mytag> represents the tag

‘mytag’. The VIP Tool Script page will recognize any word or number enclosed in angle brackets as a tag. If the

VIP Tool is placed in the ‘Show Tags’ mode by pressing the ‘Show Tags’ button, entering a word within angle

brackets creates the tag on a report page. The tag is registered only after the ‘Hide Tags’ button is pressed. If

the VIP Tool is not in the ‘Show Tags’ mode when a word within angle brackets is entered in a report page, it will

not be recognized or registered as a tag by the VIP Tool.

Tag names cannot use spaces or special characters other than the ‘_’ symbol (which is used to denote an array

of tags of the same base name). Tags are not case sensitive.

A tag can use the underscore ‘_’ symbol to designate an array of tags using the same name. The VIP Tool

utilizes the various counter functions available for assigning values to an array. For example, the For Next loop

function has a built-in counter that increments or decrements with each step of the For Next loop. The For Next

VIP Tool Programming Language Reference

Page 51

counter uses the keyword ‘nextcount’. Creating a tag called <mytag_nextcount> within a For Next loop will

create an array using ‘mytag’ as the base tag. For example, if the For Next loop counts from 1 to 3, then placing

a variable declaration of <mytag_nextcount> within the loop will create the array tags <mytag_1>, <mytag_2>

and <mytag_3>. Other counters can be used to create arrays from a base tag name. These techniques will be

discussed later in this document.

Creating a Tag on a Report Sheet

To create a tag on a Report Sheet, go to the Report Sheet and press the ‘Show Tags’ button. At that point, at tag

can be entered in the Report Sheet.

In this example, the tag <serialnum> has been entered in the Report Sheet in cell A1.

To register the tag’s position with the VIP Tool, press the ‘Hide Tags’ button.

After pressing the ‘Hide Tags’ button, the tag disappears from view. Pressing the ‘Hide Tags’ button also

registers the tag’s position within the VIP Tool workbook.

Assigning Values to Tags and Arranging Tags

In the above illustration, the ‘*IDN?’ query is sent. The argument column syntax assigns the serial number field

of the reply, 297001040, to the ‘<serialnum>’ tag.

VIP Tool Programming Language Reference

Page 52

After returning to the report page, the value assigned to the ‘<serialnum>’ tag appears in the position the

‘<serialnum>’ tag was recorded in when the ‘Hide Tags’ button was pressed.

If the ‘Show Tags’ button is pressed again, the ‘<serialnum>’ tag can still be seen marking the position of the tag.

If the tag is moved or copied to other positions on the same Report Sheet or any other Report Sheet while in the

‘Show Tags’ mode, pressing the ‘Hide Tags’ button will register the position of all of the tags, and restore the

value of the tag, if any, to the tag positions.

In the above example, the ‘<serialnum>’ tag was copied from cell A1 to cells B3, C3, and D5. After pressing the

‘Hide Tags’ button, the value assigned to the ‘<serialnum>’ tag appears in all of these locations.

VIP Tool Programming Language Reference

Page 53

Rules of Tag Use

The nature of using tags requires that they be invisible when executing a script. Creating and assigning a tag to

a worksheet cell involves first showing the tag names to make the tags visible. This is accomplished by pressing

the ‘Show Tags’ button on the VIP Tool ribbon. Pressing ‘Show Tags’ puts the VIP Tool into the ‘Show Tags’

mode. In this mode, all tags are made visible to the programmer. Any tag entered when not in the ‘Show Tags’

mode will not be registered or recognized as a tag by the VIP Tool.

A tag must first exist on a report page for the value to be transferred to or read from. If a tag does not exist, the

script will still assign a value to a tag name, but the value will not be observable or retrievable. Later operations

with the non-existent tag will only produce a null value, though a value was previously assigned to the non-

existent tag.

Only in the ‘Show Tags’ mode, is it possible to create a tag. A tag is created by putting a tag name into a cell

while the VIP Tool is in the ‘Show Tags’ mode and subsequently pressing ‘Hide Tags’ to save the tag.

The tag name must be enclosed in angle brackets, such as <tagname>. After placing a tag in a cell, pressing the

‘Hide Tags’ button will cause the tag to disappear from view in the cell. Internally, however, the VIP Tool

memorizes the tag location when ‘Hide Tags’ is pressed.

When a tag is given a value by the script, VIP Tool will automatically copy that value to any cell that has that tag

name assigned to it. If a tag has a value currently assigned to it, pressing the ‘Show Tags’ button will still display

the tag name, and, subsequently, after pressing the ‘Hide Tags’ button, the value assigned to that tag, if any, will

be restored to the cell.

If the VIP Tool is in ‘Show Tags’ mode when a script or command is executed on the script page, the VIP Tool

will automatically switch to the ‘Hide Tags’ mode before executing any command to prevent overwriting any tag

names. The action of automatically switching to ‘Hide Tags’ automatically saves the location information of all

tags in the VIP Tool workbook.

An Excel formula can occupy a cell that has been marked with a tag. When the value of a tag occupied by the

formula is retrieved, the retrieved value will be the result of the formula, not the formula itself.

Unlike variables, whose values are automatically erased when a script or portion of a script is executed, tag

values are not erased until they are overwritten, or until the script programmatically erases the tag values with

the ‘clear_tags’ command.

NOTE: Note that formulas located in a cell marked by a tag are not erased to preserve the formula.

Considerations for Assigning Values to Tags

As mentioned before, tag values can be assigned procedurally from a script. A tag value can also be read by the

script. For example, if on a report page, the programmer chooses to have a value entered on the report page,

such as selecting a radio operating mode, for example, the script can be used to incorporate that information into

what the script is meant to accomplish. A tag can also be used to transfer the result of a formula back to the

script. However, it must be pointed out that if a tag is used to send information to a script, one and only one tag

must be used to accomplish this. If more than one tag exists for sending information to the script, the VIP Tool

will only use the last value it ‘sees’ from a list of multiple values a tag with the same name in different locations

can potentially hold. This will generate unpredictable results.

VIP Tool Programming Language Reference

Page 54

When a script is used to assign a value to multiple tag locations designated by the same tag name, that same

value is transferred to all tags.

If a value is manually entered in a cell that contains a tag that is shared on other sheets, the value ‘grabbed’ by

the script may not be the value one expected to grab. In the example above, sheets Report 1, Report 2 and

Calc all have a tag called <sn>. If, for example, a value is manually entered for <sn> on the Report 1 page, VIP

Tool may finish scanning for the tag name on the Calc sheet, which may not have a value entered for <sn>.

Therefore, the script may pull in a blank value rather than the intended value.

If, however, only one <sn> tag is used to transfer the value to the script, then its value is guaranteed to be the

value the script ‘sees’.

VIP Tool Programming Language Reference

Page 55

Tag Syntax

The syntax rules for assigning and reading values using tags generally follow rules identical to performing the

same functions with variables.

Command Column Tags

A tag can be assigned a value by placing the tag in the command column, followed by the ‘=’ sign, and placing

the value in the argument column.

In the above example the tag ‘<mytexttag>’ is located on a report sheet in cell A1. The tag ‘<mynumtag>’ is

located on the same report sheet in cell A2. On row 2 of the script, the value of “Hello World” is assigned to

‘<mytexttag>’.

NOTE: Note that in the command column, the ‘=’ sign follows the tag name. In the argument column,
the value “Hello World.” is enclosed in double quotations because it is a text value. When a
value is assigned to a tag, the Info Message column will display the uppercase form of the tag
name and the value assigned to the tag.

On row 3, the numerical value of 1234 is assigned to ‘<mynumtag>’. In the argument column, the value 1234 is

placed without double quotations because it is a numerical value.

After executing rows 2 and 3 of the script, the tag values appear in the cell locations marked by the tags.

VIP Tool Programming Language Reference

Page 56

Tag values can be reassigned at any time. In the above illustration, on rows 4 and 5, each tag is tag reassigned

a different value. In this case the new values appear in every location the tag name has been assigned to.

As with variables holding text values, if the tag value must include double quotes in the actual value, enclose the

value in two sets of double quotes.

Values can be passed from one tag to another. In the above example, on row 2, ‘<mytag>’ is assigned the value

150.0125. On row 3, ‘<myothertag>’ is assigned the same value held by ‘<mytag>’.

Values can be passed to a tag from a variable or an Excel sheet cell using the VIP Tool cell assignment syntax.

In the above example, the variable ‘[myfreq]’ is assigned the value 150.0125. On row 3, the value held by

‘[myfreq]’ is assigned to ‘<mytag>’.

On another sheet, called ‘examples’, cell D1 contains the value 220.0125. On row 4 of the script, cell assignment

syntax is used to assign the value held in that cell to the tag ‘<mytag>’.

Argument Column Tags

A tag can be assigned a value by placing the tag in the argument column and using an RCI query to retrieve the

data to be assigned to the tag. In this case, the tag name is followed by some form of the ‘=reply’ keyword.

The ‘=reply’ keyword is used to select the data from the reply that will be assigned to the tag. This structure is

used so that the desired value can be retrieved from a reply that has multiple data in the Comma Separated

Value (CSV) format when returned by an instrument.

A common example of such a reply would be the response to the query ‘*IDN?’. The ‘*IDN?’ query returns data

such as manufacturer, model number, serial number, and software version of the instrument in the CSV format.

The ‘=reply’ keyword allows the user to select which of those data elements is to be assigned to the tag.

When the ‘=reply’ keyword contains a number, that number is used to select which element of the CSV response

is to be assigned to the tag. For example, the response of a ‘*IDN?’ query will be structured as some variation of

this example:

VIP Tool Programming Language Reference

Page 57

Following the ‘=Reply’ keyword with a number will select the field to be stored by the tag, in the order the field

appears in the response, starting at 1.

In the above example, ‘=Reply1’ will assign the tag the name ‘AEROFLEX’, ‘=Reply2’ will assign the tag the

model number ‘3902’, ‘=Reply3’ will assign the tag the serial number ‘297001040’, ‘=Reply4’ will assign the tag

the software version’3.7.8.2’, and ‘=Reply5’ will assign the tag the hardware version ‘2’. If no number follows the

‘=Reply’ keyword, the entire string will be assigned to the tag. For responses that contain only one field (in other

words, not a multi-field CSV string), then ‘=Reply’ must be used.

The number range of the ‘=Reply’ keyword is 1 through 8, so, for example, ‘=Reply8’ is supported, but ‘=Reply9’

is not supported. The ‘=Reply’ keyword is not case sensitive.

In the above illustration, the manufacturer name field value is assigned to the tag ‘<manufacturer>’, the model

number field value is assigned to the tag ‘<model>’, the serial number field value is assigned to the tag

‘<serialnum>’, the software version field value is assigned to the tag ‘<swver>’, and the hardware version field

value is assigned to the tag ‘<hwver>’. The entire string is assigned to the tag ‘<wholestring>’.

Query Arguments and Tags

In some cases, an instrument query may require an argument. For example, the 39xx instrument query for

broadband power uses the following syntax:

:FETCh:RF:ANALyzer:TRBPower? <units>

VIP Tool Programming Language Reference

Page 58

The query allows the user to specify the unit of measurement of the broadband power value by providing a units

argument with the query. The unit of measurement can be set to Watts, dBm, or dBW using ‘W’, ‘dBm’ or ‘W’

respectively. The response of the broadband power meter query is CSV formatted as follows:

<statusbyte>,<failbyte>,<avgcount>,<avg>

The power reading value to be assigned to the tag is in the <avg> field, which is the fourth field of the CSV reply

string, so the user will use ‘=Reply4’ to retrieve that value and assign it to the tag. In this case, the units

argument can be placed either before or after the “=Reply4” keyword.

In the above illustration, the tag ‘<pow>’ is assigned the power measurement using the broadband power query.

In row 2, ‘dBm’ is supplied as the query argument, so the dBm value of the measurement is retrieved and

assigned to ‘<pow>’. In row 3, ‘W’ is supplied as the query argument, so the Watts value of the power

measurement is retrieved and assigned to ‘<pow>’. In row 4, ‘dBW’ is supplied as the query argument, so the

dBW value of the measurement is retrieved and assigned to ‘<pow>’.

The same results will occur if the query argument is placed before the tag assignment in the argument column.

Creating Tag Arrays

A tag array can be constructed by creating a base tag name followed by an underscore and a counter name

within the bracket. For example ‘<mytag_nextcount>’ will create the tag name followed by the underscore and

the current value of ‘nextcount’. So, if the current value of nextcount is 2 when the tag value is assigned, the tag

name will be ‘<mytag_2>’.

‘Nextcount’ is the name of the counter built into the For Next loop. There are seven different counters that can

be used to create tag arrays.

VIP Tool Programming Language Reference

Page 59

Counter Name Counter Information

nextcount Integer up or down counter available with each instance of a For Next Loop

docount Integer up counter available with each instance of a Do Loop

counter1 Autonomous decimal up or down counter

counter2 Autonomous decimal up or down counter

counter3 Autonomous decimal up or down counter

counter4 Autonomous decimal up or down counter

counter5 Autonomous decimal up or down counter

All counters but ‘docount’ can count up or down; ‘docount can only count up. All of the counters can be

assigned arbitrary values. Counters 1 through 5 can be assigned integer or decimal values. When using

counters 1 through 5 for creating tag array names, only integers can be used.

In the above example, a For Next loop is set to count from 1 to 5. For each iteration of the loop, a SINAD

measurement is taken on row 3. The argument for row 3 is ‘<sinad_nextcount>=reply4’. Each time the loop

steps to row 3, the SINAD measurement is taken, and ‘reply4’, which is the SINAD measurement taken from the

return string to the query, is assigned to ‘<sinad_nextcount>’. ‘Nextcount is the built-in counter for the For Next

loop. Its current count is assigned to the name of ‘<sinad_nextcount> to which the current SINAD reading is

assigned. So, on the first step, the tag is named ‘<sinad_1>’, which is assigned the current reading. On the

second step, the tag is named ‘<sinad_2>’, which is assigned the next current reading. This procedure is

repeated from 1 to 5, the For Next range.

‘Print’ is a VIP Tool debugging keyword. Placing ‘print’ in the Command column and the name of a tag in the

Argument column will result in the Info Message column displaying the tag name and the value stored in the tag.

After the For Next loop has run, on rows 6 through 10, ‘print’ is used to display each name of the tag array

created by the For Next loop and the value that was stored in each tag of the array.

VIP Tool Programming Language Reference

Page 60

In the above illustration, ‘docount’ is used to set the array number. By default, ‘docount’ increments to 1 on the

first iteration of a Do Loop and increments on each iteration of the loop. In this example, the Do Loop is set to

exit when ‘docount’ is equal to 5 on row 5.

The above example uses counter1 to set the array number. In this case, counter1 is set to a value of 4 before

the For Next loop starts. The ‘inc_counter1’ command on row 4 increments counter1 by the default value of 1

each time the For Next loop iterates. Counter1 is incremented by 1 before the first SINAD query is sent on row

5, so the first array number will be 5. The For Next loop is set to iterate 5 times before the loop ends. Because

the counter1 value used for the array is incremented 5 times, the array number steps from 5 to 9 for the 5

iterations of the loop. Thus, the first array name is ‘<sinad_5>’, the second array name is ‘<sinad_6>’ and so

forth until the terminal count of the For Next loop, which sets the last array name to ‘<sinad_9>’.

Tag as Argument for RCI Command

A tag can be used to hold the argument for an RCI command.

In this example, row 2 sends a query for the RF frequency counter reading of a 39xx instrument. The value of

the frequency counter is assigned to the tag ‘<rf_freq>’ in the argument column of row 2.

On row 3, the command to set the RF generator frequency uses the ‘<rf_freq>’ variable value to set the RF

generator to the same frequency as the value read from the frequency counter on row 2.

NOTE: It should be noted that a tag can not hold an RCI command or query for use in the command
column.

VIP Tool Programming Language Reference

Page 61

Cell Assignments

The VIP Tool provides syntax for directly reading and assigning values to and from cells throughout the VIP Tool

worksheet. This syntax serves to provide a shorthand means of transferring these values without relying on

Excel formulas. It also permits an expedient method of transferring values to and from multiple cells within a

loop; the same techniques used to create variable and tag arrays are used to create an array or range of

addressed cells. Cell assignments can only be used in the argument column of the script sheet.

Simple Cell Assignment Syntax

A simple cell assignment combines the cell location along with the name of the sheet the cell is located in. A cell

assignment is enclosed in open and closed parenthesis. It contains the worksheet tab name the cell is located

in, followed by an underscore, which is followed by the column letter/row number designation of the target cell.

A simple cell assignment takes this form:

(sheetname_CellColumCellRow)

An example of a simple cell assignment would be as follows:

(Report_A1)

This example specifies cell A1 on a worksheet named ‘Report’ that is included within the VIP Tool as a tab in the

workbook.

The sheet name parameter may include spaces. For example, ‘(My Report_B3)’ could be used to specify cell B3

on a worksheet named ‘My Report’ that is included as a tab in the VIP Tool workbook. Neither the worksheet

name nor the column letter is case sensitive. The same cell assignment could be written as ‘(my report_b3)’ and

still be a valid cell assignment.

Assigning Values Using Cell Assignment

A worksheet cell can be assigned a value by placing the cell assignment in the argument column and using an

RCI query to retrieve the data to be assigned to the target cell. In this case, the cell assignment is followed by

some form of the ‘=reply’ keyword.

The ‘=reply’ keyword is used to select the data from the reply that will be assigned to the target cell. This

structure is used so that the desired value can be retrieved from a reply that has multiple data in the Comma

Separated Value (CSV) format when returned by an instrument.

A common example of such a reply would be the response to the query ‘*IDN?’. The ‘*IDN?’ query returns data

such as manufacturer, model number, serial number, and software version of the instrument in the CSV format.

The ‘=reply’ keyword allows the user to select which of those data elements is to be assigned to the target cell.

When the ‘=reply’ keyword contains a number, that number is used to select which element of the CSV response

is to be assigned to the variable. For example, the response of a ‘*IDN?’ query will be structured as some

variation of this example:

VIP Tool Programming Language Reference

Page 62

Following the ‘=Reply’ keyword with a number will select the field to be assigned to the target cell, in the order

the field appears in the response, starting at 1.

In this example, ‘=Reply1’ will assign the target cell the name ‘AEROFLEX’, ‘=Reply2’ will assign the target cell

the model number ‘3902’, ‘=Reply3’ will assign the target cell the serial number ‘297001040’, ‘=Reply4’ will

assign the target cell the software version’3.7.8.2’, and ‘=Reply5’ will assign the target cell the hardware version

‘2’. If no number follows the ‘=Reply’ keyword, the entire string will be assigned to the target cell. For responses

that contain only one field (in other words, not a multi-field CSV string), then ‘=Reply’ must be used.

The number range of the ‘=Reply’ keyword is 1 through 8, so, for example, ‘=Reply8’ is supported, but ‘=Reply9’

is not supported. The ‘=Reply’ keyword is not case sensitive.

In the above illustration, the cell assignments target a report sheet tab called ‘Examples’, which is embedded in

the VIP Tool workbook. In this example, each target cell is in a different column on the ‘Examples’ sheet. The

manufacturer name field value is assigned to the ‘Examples’ sheet cell A1, the model number field value is

assigned to the ‘Examples’ sheet cell B1, the serial number field value is assigned to the ‘Examples’ sheet cell

C1, the software version field value is assigned to the ‘Examples’ sheet cell D1, and the hardware version field

value is assigned to the ‘Examples’ sheet cell E1. The entire string is assigned to the ‘Examples’ sheet cell F1.

VIP Tool Programming Language Reference

Page 63

In this next example, the cell assignments still target a report sheet tab called ‘Examples’, but each target cell is

in a different row in the same column. The manufacturer name field value is assigned to the ‘Examples’ sheet

cell A1, the model number field value is assigned to the ‘Examples’ sheet cell A2, the serial number field value is

assigned to the ‘Examples’ sheet cell A3, the software version field value is assigned to the ‘Examples’ sheet cell

A4, and the hardware version field value is assigned to the ‘Examples’ sheet cell A5. The entire string is

assigned to the ‘Examples’ sheet cell A6.

Query Arguments and Cell Assignments

In some cases, an instrument query may require an argument. For example, the 39xx instrument query for

broadband power uses the following syntax:

:FETCh:RF:ANALyzer:TRBPower? <units>

The query allows the user to specify the unit of measurement of the broadband power value by providing a units

argument with the query. The unit of measurement can be set to Watts, dBm, or dBW using ‘W’, ‘dBm’ or ‘W’

respectively. The response of the broadband power meter query is CSV formatted as follows:

<statusbyte>,<failbyte>,<avgcount>,<avg>

The power reading value to be assigned to the target cell is in the <avg> field, which is the fourth field of the

CSV reply string, so the user will use ‘=Reply4’ to retrieve that value and assign it to the target cell. In this case,

the units argument can be placed either before or after the “=Reply4” keyword.

In the above illustration, the variable ‘[pow]’ is assigned the power measurement using the broadband power

query. In row 2, ‘dBm’ is supplied as the query argument, so the dBm value of the measurement is retrieved and

assigned to ‘Example’ sheet cell A1. In row 3, ‘W’ is supplied as the query argument, so the Watts value of the

VIP Tool Programming Language Reference

Page 64

power measurement is retrieved and assigned to ‘Example’ sheet cell A2. In row 3, ‘dBW’ is supplied as the

query argument, so the dBW value of the measurement is retrieved and assigned to ‘Example’ sheet cell A3.

The same results will occur if the query argument is placed before the variable assignment in the argument

column.

Cell Assignment Arrays and Ranges

An array of cell assignments can be constructed by designating a target column on a sheet tab followed by a

colon and a counter name within the cell assignment parenthesis. For example, ‘nextcount’ is the built-in

counter of a For Next loop. The syntax ‘(Examples_A:nextcount)’ designates column ‘A’ of an existing

worksheet within the workbook called ‘Examples’ with the row number defined by the current value of the

‘nextcount’ counter. So, if the current value of nextcount is 2 when ‘(Examples_A:nextcount)’ is encountered,

the target cell will be cell A2 of the ‘Examples’ sheet.

There are seven different counters that can be used to create designate an array of cell assignments.

Counter Name Counter Information

nextcount Integer up or down counter available with each instance of a For Next Loop

docount Integer up counter available with each instance of a Do Loop

counter1 Autonomous decimal up or down counter

counter2 Autonomous decimal up or down counter

counter3 Autonomous decimal up or down counter

counter4 Autonomous decimal up or down counter

counter5 Autonomous decimal up or down counter

All counters but ‘docount’ can count up or down; ‘docount’ can only count up. All of the counters can be

assigned arbitrary values. Counters 1 through 5 can be assigned integer or decimal values. When using

counters 1 through 5 for creating an array of cell assignments, only integers can be used.

VIP Tool Programming Language Reference

Page 65

In the above example, a For Next loop is set to count from 1 to 5. For each iteration of the loop, a SINAD

measurement is taken on row 3. The argument for row 3 is (examples_a:nextcount)=reply4’. Each time the loop

steps to row 3, the SINAD measurement is taken, and ‘reply4’, which is the SINAD measurement taken from the

return string to the query, is assigned to ‘(Examples_A:nextcount)’. ‘Nextcount’ is the built-in counter for the For

Next loop. Its current count is assigned to the row number of column A of sheet embedded in the workbook

called ‘Examples’. Therefore, the current SINAD reading is assigned to each row number in column A of the

Examples sheet enumerated by ‘nextcount’. So, on the first step, the first SINAD reading is assigned to cell A1

of the ‘Examples’ sheet. On the second step, the second SINAD reading is assigned to cell A2 of the ‘Examples’

sheet. This procedure is repeated from 1 to 5, the For Next range.

‘Print’ is a VIP Tool debugging keyword. Placing ‘print’ in the Command column and the name of a cell

assignment in the Argument column will result in the Info Message column displaying the target cell and the

value stored in the target cell.

After the For Next loop has run on rows 6 through 10, ‘print’ is used to display each target cell name in the array

created by the For Next loop and the value that is stored in each target cell.

In the above illustration, ‘docount’ is used to set the array number. By default, ‘docount’ increments to 1 on the

first iteration of a Do Loop and increments on each iteration of the loop. In this example, the Do Loop is set to

exit when ‘docount’ is equal to 5 on row 5.

VIP Tool Programming Language Reference

Page 66

The above example uses counter1 to set the array number. In this case, counter1 is set to a value of 4 before

the For Next loop starts. The ‘inc_counter1’ command on row 4 increments counter1 by the default value of 1

each time the For Next loop iterates. Counter1 is incremented by 1 before the first SINAD query is sent on row

5, so the first array number will be 5. The For Next loop is set to iterate 5 times before the loop ends. Because

the counter1 value used for the array is incremented 5 times, the array number steps from 5 to 9 for the 5

iterations of the loop. Thus, the first cell assignment target cell A5 on the Examples sheet, the second target cell

is A6 on the Examples sheet and so forth until the terminal count of the For Next loop, which sets the last target

cell to A9 on the Examples sheet.

VIP Tool Programming Language Reference

Page 67

Cell Assignment Ranges

A range of cell assignments works much like an array of cell assignments with the difference being that the

syntax specifies the row number that is the starting row number from which the array will be applied. For

example, the starting row number can be specified as ‘5’. The first value of the array will then be assigned to

row 5 and the subsequent elements in the cell assignment array will follow by assigning row 6, row 7 and so on.

The syntax for a range of target cells includes the column and row number of the starting target cell, followed by

a colon, and the range syntax for the counter to be used. Each of the counters included in the VIP Tool includes

a range version of the syntax for this purpose.

Counter Name Cell Assignment Range Syntax

nextcount nextrange

docount dorange

counter1 counter1range

counter2 counter2range

counter3 counter3range

counter4 counter4range

counter5 counter5range

For example, the syntax ‘(Examples_A5:nextrange)’ designates column ‘A’ of an existing worksheet within the

workbook called ‘Examples’ with the starting row number defined as ‘5’. If the current count of nextcount is 1, the

target cell will be cell A5 of the examples sheet. The next value of nextcount will be 2, which designates the next

target cell as A6 of the examples sheet, and so on.

In the above example, a For Next loop is set to count from 1 to 5. For each iteration of the loop, a SINAD

measurement is taken on row 3. The argument for row 3 is (examples_a5:nextrange)=reply4’. Each time the

loop steps to row 3, the SINAD measurement is taken, and ‘reply4’, which is the SINAD measurement taken

from the return string to the query, is assigned to ‘(Examples_A5:nextrange)’. ‘Nextcount is the built-in counter

VIP Tool Programming Language Reference

Page 68

for the For Next loop, and ‘nextrange’ is the range variant of the counter. The first count of nextcount is

assigned to row number 5 of column A of the sheet embedded in the workbook called ‘Examples’. Thereafter,

the current SINAD reading is assigned to each row succeeding row number after row 5 in column A of the

Examples sheet enumerated by ‘nextcount’. So, on the first step, the first SINAD reading is assigned to cell A5

of the ‘Examples’ sheet. On the second step, the second SINAD reading is assigned to cell A6 of the ‘Examples’

sheet. This procedure is repeated from 1 to 5, the For Next range.

In the above illustration, ‘dorange’, the range variant of the current value of ‘docount’, is used to set the array

number. By default, ‘docount’ increments to 1 on the first iteration of a Do Loop and increments on each

iteration of the loop. In this example, the Do Loop is set to exit when ‘docount’ is equal to 5 on row 5. The

‘dorange’ syntax starts the count at row 5 and targets the following rows in the ascending order of the ‘docount’

value.

In the above illustration, ‘counter1range’, the range variant of the current value of ‘counter1’, is used to set the

array number. In this case, counter1 starts counting from the default value of counter1, which is zero. The

‘inc_counter1’ command on row 4 increments counter1 by the default value of 1 each time the For Next loop

iterates. Counter1 is incremented by 1 before the first SINAD query is sent on row 5. The ‘counter1range’

syntax designates row 5 as the starting row, so the first array number will be 5. The For Next loop is set to

VIP Tool Programming Language Reference

Page 69

iterate 5 times before the loop ends. Because the counter1 value used for the array is incremented 5 times, the

array number steps from 5 to 9 for the 5 iterations of the loop. Thus, the first cell assignment target cell A5 on

the Examples sheet, the second target cell is A6 on the Examples sheet and so forth until the terminal count of

the For Next loop, which sets the last target cell to A9 on the Examples sheet.

Math Functions

In addition to the ability to use Excel math formulas, the VIP Tool scripting language provides the ability to

perform simple math functions using the language itself. This functionality is included to decrease reliance on

using a sheet external to the script and the report page, thus enhancing the portability of the script.

The VIP Tool math functions can only be performed separately on variables, tags and cell assignments. A math

function cannot be used directly when defining an argument to an RCI command. Instead, the product of a math

function must be assigned to a variable or a tag, or it can be passed to a cell assignment, then that object can be

used as an argument to an RCI command. The four basic math functions use the Command Column to

designate the Variable or Tag that is to be assigned the outcome of the math function, and the argument column

is used to perform the math function using variables, tags, cell assignment or direct entry numbers.

Simple Math Functions Supported by the VIP Tool Scripting Language

The VIP Tool supports four basic math functions.

Function Operator Command Column Syntax Argument Column Syntax

Addition + sum= addend + addend

Subtraction - difference= minuend - subtrahend

Multiplication * product= multiplicand * multiplier

Division / quotient= dividend / divisor

Math Function Command Column Syntax

The outcome of a math function can only be assigned to a variable or a tag. Cell assignment syntax is not

allowed in the command column.

The variable or tag must be followed by the equals sign in the command column. For example, to assign the

outcome of a math function to the variable ‘[myvalue]’, then the command column syntax is ‘[myvalue]=’. The

command column syntax for assigning the outcome of a math function to the tag ‘<myvalue>’ is “<myvalue>=”.

VIP Tool Programming Language Reference

Page 70

Math Function Argument Column Syntax

The Argument column math function can be performed using direct entry of numbers, variables, tags, cell

assignments or any combination of these elements.

A variable or variable array can be assigned a value and used in a math operation. In the above example, rows

2 through 5 depict assigning the outcome of the four math functions to variables. The variable ‘[mysum]’ is

assigned the sum of ‘4 + 5’, the variable ‘[mydifference]’ is assigned the difference value of ‘4 – 5’, the variable

‘[myproduct]’ is assigned the product of ‘4 * 5’ and the variable ‘[myquotient]’ is assigned the quotient of ‘4 / 5’.

Rows 6 through 9 depict assigning the outcome to tags. The tags are assigned the outcome of the four math

operations, and the value is transmitted to any cell that has the tag name assigned to it.

A variable can be assigned a value and used in a math function. In the above example, the variable ‘[mynum]’ is

assigned the value of ‘5’ and is used to represent that number in the math operations.

A tag or tag array can be assigned a value and used in a math function. In the above example, the tag

‘<mynum>’ is assigned the value of ‘4’ and is used to represent that number in the math operations.

VIP Tool Programming Language Reference

Page 71

A cell can be assigned a value and used in a math function using cell assignment, cell assignment array, or cell

assignment range syntax. In the above example, cell A1 of an embedded sheet in the workbook called

‘Examples’ is assigned the value of ‘4’ and is used to represent that number in the math operations using cell

assignment syntax.

Order of Math Operations for Variables, Tags and Cell Assignments

When the value of a variable or tag is set to be assigned the value of a math operation that contains the current

value of the variable or tag, the current value is the value to be evaluated in the math operation. After the math

operation is completed, the variable or tag is updated with the new value rendered by the math operation.

In the above example, the variable ‘[mynum]’ begins with the value of ‘5’. ‘[mynum]’ is added to the value of 5

and assigned again to ‘[mynum]’. The value of ‘[mynum]’ then holds the value of the sum, which is ‘10’.

‘[mynum]’ is then added to ‘[mynum]’ and assigned back to ‘[mynum]’, which becomes the value of 20 (10 + 10).

The tag ‘<myvalue>’ begins with the value of 4. ‘<myvalue>‘ is added to the value of 4 and assigned again to

‘<myvalue>‘. The value of ‘<myvalue>‘ then holds the value of the sum, which is ‘8’. ‘<myvalue>‘ is then added

to ‘<myvalue>‘ and assigned back to ‘<myvalue>‘, which becomes the value of 16 (8 + 8).

Using Math Functions to Generate Arguments

A math function cannot be used directly as an argument to an RCI command. Instead, the outcome of a math

function must be assigned to a variable, tag or cell assignment when using math functions to generate argument

values. In the above example, a For Next loop is set up to set a 39xx receiver to a fundamental frequency of

151.0125, then to the second harmonic frequency of 302.025, and finally the third harmonic frequency of

453.075. This is accomplished by assigning the nextcount value to the variable ‘[freqmult]’, then multiplying that

variable with the variable holding the fundamental frequency value and assigning the result to the ‘[recfreq]’

variable. The ‘[recfreq]’ variable is then used as the argument to the RCI command that sets the receiver

frequency.

VIP Tool Programming Language Reference

Page 72

Concatenation

The VIP Tool uses the symbol ‘&’ for concatenating strings. A text string, or a text string held by a variable, tag

or cell assignment, can be concatenated with another text string using this symbol. The VIP Tool supports

concatenating only two strings at a time.

It is important to know that the VIP Tool will always remove any preceding space in a string when concatenating,

so, if a space is to be preserved between the two strings when they are joined, the space must be placed at the

end of the first string.

In the above example, “Hello “ is assigned to the variable ‘[mytext]’. On row 3, ‘[mytext]’ is concatenated with the

string “world.” and the resultant string ‘Hello world.’ is assigned to the variable ‘[my_message]’.

The above illustration demonstrates concatenating two variables that hold string values. ‘[mytext]’ is assigned

the value “Hello “ and ‘[my_secondtext]’ is assigned the value “world.” On row 4, the two variables are

concatenated to “Hello world.” And assigned to the variable ‘[my_message]’.

A variable, tag or cell assignment value can be concatenated with another string and assigned to the same

variable, tag or cell assignment. The original value of the variable, tag or cell assignment is applied to the

concatenation before it assumes the new concatenated value. In the above examples, the variable ‘[mytext]’ is

assigned the value “Hello “. On row 3, ‘[mytext]’ is then concatenated with “world”, forming the string “Hello

world.”, which is assigned back to ‘[mytext]’.

On row 4, “Hello “ is again assigned to ‘[mytext]’. On row 4, ‘[mytext]’ is concatenated with ‘[mytext]’ to form the

string “Hello Hello”, which is assigned back to ‘[mytext]’.

VIP Tool Programming Language Reference

Page 73

In the above example, a worksheet called “Examples” is embedded in the VIP Tool workbook. In cell A1 of the

“Examples” worksheet is the text “This is a test ”. The worksheet also contains two tags, ‘<mytext>’ and

‘<mytext2>’. ‘<mytext>’ holds the text “of the emergency “ and ‘<mytext2>’ holds the text “broadcast system.”

NOTE: Note that when the text to be concatenated is imported from a sheet, quotations are not used
to store the text on the worksheet. Only on the script sheet are quotations used to enclose
text.

On row 2 of the script, ‘(examples_A1)’, which is the cell assignment for cell A1 of the examples sheet, is

concatenated with the text held by the ‘<mytext>’ tag. The result, “This is a test of the emergency” is assigned to

the variable ‘[mytext]’. On row 3, ‘[mytext]’ is concatenated with the contents of the tag ‘<mytext2>’ to form “This

is a test of the emergency broadcast system.” This new string is assigned back to ‘[mytext]’.

Counters and Timers

Counter Functions

Counters

Command (Argument) Syntax:

Set_Counter1 (initial decimal value of counter1) Sets the initial value of Counter1. Optional; without this

statement, the initial value of Counter1 defaults to 0.

Ret_Counter1 (no argument) When executed, causes current Counter1 value to appear in the Reply column.

Can be used to assign the counter value to a variable or tag.

Inc_Counter1 (optional decimal value, defaults to 1) Increments the current Counter1 value by the amount

specified in the argument. If no argument is applied, the increment value defaults to 1.

Dec_Counter1 (optional decimal value, defaults to 1) Decrements the current Counter1 value by the amount
specified in the argument. If no argument is applied, the decrement value defaults to 1.

NOTE: The above definition uses Counter1 as the example. The same syntax rules and usage apply
to Counter1, Counter2, Counter3, Counter4 and Counter5.

The VIP Tool scripting language provides access to five independent counters. Unlike nextcount (the counter

integral to a for/next loop) and docount (the counter integral to a do loop) the value of a counter can be a non-

integer number.

The five counters are counter1, counter2, counter3, counter4 and counter5. Each counter is an independent

function that can be set to a specific decimal value, incremented by a specific decimal value, and decremented

VIP Tool Programming Language Reference

Page 74

by a specific decimal value. The value of a counter can be returned to a variable, tag, or cell assignment, and

can be used as an argument for SCPI commands and VIP Tool keywords. A counter value, when set to an

integer value, can be used as an array index in defining and assigning or deriving values to or from a variable,

tag, or cell assignment. The counter keywords are not case sensitive.

The above example demonstrates the syntax and use of counter1, counter2, counter3, counter4 and counter5

commands.

Timer Functions

Timers

Command (Argument) Syntax:

start_timer_1 (no argument) Starts the timer and returns the start time in time of day format.

current_timer_1 (no argument) Returns the elapsed time since the timer was started in seconds.

stop_timer_1 (no argument) Stops the timer and returns stop time in time of day format.

total_timer_1 (no argument) Returns the time elapsed between start and stop in hours:minutes:seconds.

NOTE: The above definition uses Timer_1 as the example. The same syntax rules and usage apply to
Timer_1, Timer_2, Timer_3, Timer_4 and Timer_5.

The VIP Tool scripting language provides access to five independent timers. Each timer can be used to mark

the beginning and end of an operation, the total elapsed time of an operation, and the current amount of time (in

seconds) from when the timer was invoked.

The five timers are timer_1, timer_2, timer_3, timer_4 and timer_5. The values of a counter can be returned to

a variable, tag, or cell assignment. The timer keywords are not case sensitive.

VIP Tool Programming Language Reference

Page 75

The above example demonstrates the Timer syntax and response from the VIP Tool. On row 2, Start_Timer_1

begins operation for Timer_1. The Reply column displays the time of day that the timer was started. Row 3

introduces a delay of 5 seconds. After the 5 seconds of the delay have elapsed, row 4 is executed with the

Current_Timer_1 command. The Reply column displays 5 seconds, because 5 seconds have elapsed since the

timer was started on row 2. Row 5 introduces another delay of 5 seconds. Row 6 again uses the

Current_Timer_1 command to display the time elapsed since the timer was started on row 2, now 10 seconds.

On row 7, Timer_1 is stopped and the time of day the timer was stopped is displayed in the Reply column.

Finally, row 8 uses the Total_Timer_1 to display the total time elapsed since the timer was started on row 2. The

total time is displayed in hours:minutes:seconds format in the Reply column.

The responses to the various Timer commands can be assigned to variables. In the above illustration, the

syntax for doing so is demonstrated.

On row 2, the Start_Timer_1 time of day response is assigned to the variable ‘[my_start_time]’. On rows 4 and

6, the response, in seconds, to Current_Timer_1 is assigned to the variable ‘[my_current_time]’. On row 7, the

time of day response to the Stop_Timer_1 keyword is assigned to the variable ‘[my_stop_time]’. On row 8, the

response to Total_Timer_1, in hours:minutes:seconds is assigned to the variable ‘[my_total_time]’.

The same syntax is used to assign the responses to tags or cell assignments.

A timer can be used to set a time limit for a loop to finish an assigned task. In the above example, before a Do

Loop is started on row 4, Timer_1 is started on row 2. A time limit of 30 seconds is assigned to the ‘[time_limit]’

variable on row 3.

The Do Loop iterates over a ‘*IDN?’ query every 3 seconds (as set by the delay value on row 6). Each time the

loop iterates, the elapsed time of Timer_1 is loaded into the ‘[my_elapsed_time]’ variable on row 7. On row 8,

each iteration of the loop evaluates whether the elapsed time held by ‘[my_elapsed_time]’ is over the time limit of

30 seconds, which is held by the ‘[time_limit]’ variable. When the elapsed time exceeds 30 seconds, the loop

exits.

VIP Tool Programming Language Reference

Page 76

Goto and Subroutine Functions

Goto Function

Goto/Return

Command (Argument) Syntax:

goto (row number expressed as integer) Row number to which execution will be directed.

return (no argument) Command returning execution back to the row directly following the goto row.

Goto/Return example

The goto function will redirect execution of a script to the line defined by its argument. The return function will

return execution of the script back to the row immediately following the goto argument that was last invoked.

In the above example, row 2 has ‘goto’ in the command column and ‘5’ in the argument column. This directs

execution of the script to row 5. The script then executes the query ‘*IDN?’ at row 5. The script then encounters

the ‘return’ command on row 6. The return command returns execution back to row 3, the row immediately

following the ‘goto’ command and executes the ‘*IDN?’ query on that row.

Goto is not case sensitive

Return is not case sensitive

Up to 5 simultaneous goto/return loops can be used

Care should be taken with this command set. If, after a goto/return function has been defined, any rows are

inserted before or between the goto/return set, the goto row number argument must be edited to define the new

row number. An alternate method may be to use the sub/endSub statement and use runsub to define the

beginning of the desired sequence of commands.

VIP Tool Programming Language Reference

Page 77

Subroutine Function

Sub/Endsub/Runsub

Command (Argument) Syntax:

Sub (Name declaration expressed by text) Assigns the subroutine name and defines the sub start .

Endsub (no argument) Defines the end of the subroutine.

Runsub (Name of sub to go to expressed by text, variable, tag or cell assignment) Calls the subroutine.

Sub block example

The sub block is a contiguous block of commands defined by the sub and endsub commands. A sub block

begins with the keyword sub and ends with the keyword endsub. When called by the runsub command, the

script will find the first instance of ‘sub’ that contains the name designated by the runsub command argument.

The script will then execute each command placed between ‘sub’ and ‘endsub’, then return to the row number

immediately following the runsub command that invoked the sub routine.

In the above example, the keyword sub appears in the command column of row 7. The argument for the sub

command is ‘mysub’. This gives the subroutine the name ‘mysub’. Following the sub keyword are two *IDN?

queries. Following the two queries, on row 10, is the keyword ‘endsub’. Endsub defines the end of the

sequence of commands that will run when the subroutine is called by runsub.

On row 2 is the command runsub, with the argument ‘mysub’. When the script encounters this command, it is

told to find the subroutine with the name ‘mysub’. The script then locates ‘mysub’ on row 7 and begins executing

the commands following the sub name. In this case, it processes two ‘*IDN?’ queries. When the script

encounters the endsub keyword on row 10, it returns to the row immediately following the runsub command that

invoked the subroutine – row 3. The script then resumes execution at that point, so the ‘*IDN?’ query on row 3 is

executed after the subroutine has run.

Sub, endsub and runsub are not case sensitive

The name of the subroutine is not case sensitive

The name of the subroutine may have spaces

If a subroutine name includes quotes, the calling runsub must use quotes

If more than one subroutine with the same name is included in the script, the script will only use the subroutine

that is defined at the lowest row number

Subroutines can nest within other subroutines

VIP Tool Programming Language Reference

Page 78

Up to fifty subroutines can be simultaneously nested

A subroutine can appear anywhere on the script page, before or after the runsub command that calls it

Loops and Conditional Statements

For Next Loop

For/Next/Nextcount

Command (Argument) Syntax:

For (integer start count to integer end count) Defines the number of iterations, count up or count down.

Next (no argument) Defines the end of the loop.

Nextcount (optional integer argument assigns value) Integral counter that increments once per iteration. Can

also be used in the Argument column when assigning the count value to a variable or tag.

For, Next and Nextcount are not case sensitive

The For Next loop is used to iterate a sequence of commands a specific number of times. The For Next loop is

defined by the For statement in the Command column. The For command must have an argument defining the

number of iterations of the loop, in the form of the starting integer, the To keyword, and the ending integer. The

end of the loop is defined by the Next keyword. Commands placed between the For and Next keywords will be

executed in each iteration of the For Next loop.

In the example above, For 1 To 5 defines that the loop will repeat 5 times. The ‘*IDN?’ query is placed between

the For and Next keywords, so the ‘*IDN?’ query will be sent 5 times as the loop runs.

A For Next loop can count down as well as count up. In the above example, the argument for the For keyword is

‘5 to 1’. This means the For Next loop will count down from 5 to 1.

VIP Tool Programming Language Reference

Page 79

The For argument can contain positive or negative integers. In the above example, the For Next loop still runs 5

times, but, in this case, it counts down, starting at 0 and ending at -4.

The For argument can be defined by the contents of variables, tags and/or cell assignments. The above

illustration depicts the For Next loop running, starting at the contents of the variable ‘[startnum]’, which has been

assigned the value of 1, and ending at the value stored by ‘[endnum]’, which has been assigned the value of 5.

The above example accomplishes the same task using the tag <startnum>, which holds the value of 1 on a

different sheet as the starting integer and the value of 5 stored in cell A1 of an embedded sheet called

‘Examples’ as the ending number of the loop.

Nextcount

Each For Next loop contains an integral counter called nextcount that contains the count of its For Next loop.

When nextcount is placed in the Command column without an argument, the Reply column will display the

current count of the For Next loop.

In the above illustration, nextcount is at a value of 2, meaning that loop has so far counted from 1 to 2.

Above, nextcount reveals that the For Next loop has counted from 0 to -2.

When an integer is placed in the argument column, nextcount is set to the value of the argument. This is useful

if the user wishes the For Next loop to exit when a particular condition is met. By setting the value of nextcount

to the terminal count of the For Next loop, the loop will exit when it encounters the Next keyword.

VIP Tool Programming Language Reference

Page 80

As an example, the For Next loop illustrated above is set to exit if the count either reaches 20 or the measured

SINAD value drops below 12 dB.

Row 4 has nextcount in the Command column without an argument, so the current value of nextcount is

displayed in the Reply column. Row 5 lowers the value of the ‘[genlevel]’ variable by 1 each time the loop

iterates. ‘[genlevel]’ is applied as the argument for the 39xx generator level RCI command on row 6, so each

time the loop iterates, it lowers the instrument’s RF generator level by 1 dB. After a one second delay to allow

the measurement to settle, the SINAD meter reading is retrieved and assigned to the ‘[sinad]’ variable. Row 9

contains an IF statement that checks to see if the SINAD reading has fallen below 12 dB. If the SINAD reading

drops below 12 dB, then on row 10, nextcount will be assigned the value of 20, the terminal count of the For

Next loop. It can be seen in the Reply column of row 4 that the For Next loop counted from 1 to 12 before the

SINAD reading dropped below 12 dB. When the SINAD value dropped below 12 dB, nextcount was loaded with

the value of 20, and the loop terminated before it had fully counted to 20 when it encountered the Next keyword.

Nextcount can be placed in the Argument column to assign the value of nextcount to a variable or tag.

In this example, nextcount is placed in the Argument column on row 4. The command column contains the

variable assignment ‘[freqmult]=’. This assigns the current value of nextcount to the variable ‘[freqmult]’.

Do Loop

Do/Exitdo/Loop/Docount

Command (Argument) Syntax:

Do (no argument) Defines the beginning of the loop.

Exitdo (first value condition second value) Conditional statement used for exiting the loop.

Loop (no argument) Defines the end of the loop.

Docount (optional integer argument assigns value) Integral counter that increments once per iteration. Can also

be used in the Argument column when assigning the count value to a variable or tag.

Do, exitdo, docount and loop are not case sensitive.

VIP Tool Programming Language Reference

Page 81

The Do loop is used to iterate a sequence of commands a non-specific number of times. The Do loop is defined

by the Do statement in the Command column. The Do command does not use an argument. The end of the

loop is defined by the Loop keyword. The Loop keyword does not use an argument. Commands placed

between the Do and Loop keywords will be executed on each iteration of the Do loop. A Do loop will remain

active until a condition is provided in the form of an argument for the Exitdo keyword, thereby breaking the loop.

Therefore, Exitdo is a requirement for constructing a Do loop.

Exitdo requires a conditional statement as an argument. When the conditional statement is true, the loop will

exit immediately from the row the Exitdo keyword that generated the true condition is placed on, and operation of

the script will resume on the row immediately following the row the Loop keyword ending the Do loop is placed

on. A Do loop may have more than one Exitdo condition so any number of conditions to exit the loop can be

defined. Exitdo is placed in the Command column, and an argument consisting of two values separated by a

conditional symbol is placed in the Argument column. There are six conditional operators that can be used for

the Exitdo argument. The table below lists the conditional operators used by Exitdo.

Symbol Conditional Statement

= First value equal to second value is true

!= First value not equal to second value is true

> First value greater than second value is true

>= First value greater than or equal to second value is true

<
First value less than second value is true

<=
First value less than or equal to second value is true

With the exception of the ‘=’ and ‘!=’ operators, the values evaluated by the conditional statements must be

numerical. In the case of the ‘=’ and ‘!=’ operators, the values used for comparison can be either text or

numerical.

For example, the above illustration depicts the ‘=’ operator being used to exit the loop based upon the text value

of the ‘[modelnum]’ variable.

Docount

Each Do loop contains an integral counter called docount. Docount contains the count of its do loop. Docount

steps to a value of 1 when its Do keyword is executed. Docount will increment by 1 each time the Loop keyword

that defines the end of its loop is encountered. When docount is placed in the Command column without an

argument, the Reply column will display the current count of the Do loop.

VIP Tool Programming Language Reference

Page 82

The above illustration depicts a simple Do loop. Row 2 defines the beginning of the loop with the do statement.

Row 6 defines the end of the loop with the loop statement. On row 3, the docount keyword with no argument

causes the current count value of the loop to be displayed in the Reply column. Row 4 contains the keyword

exitdo. The argument for exitdo is ‘docount = 3’, so when the count equals 3, the loop will exit and move

execution to row 7, which, in this case, is empty. Row 5 contains the RCI query ‘*IDN?’, so for every iteration of

the loop where docount is not equal to 3, the ‘*IDN?’ query will be sent to the instrument.

The above example depicts what happens when the loop is directed to exit when the condition for the exitdo

keyword is true. In this case, the loop will exit when docount is equal to 1. In this case, when the loop begins

with the do statement, docount is automatically set to 1, its starting count. On row 3, exitdo is set to cause the

loop to exit when docount is equal to 1. Because docount is immediately equal to 1 at the beginning of the loop,

the exitdo condition becomes true, and the loop exits. When the loop exits, execution of the script jumps to the

line immediately following the loop keyword which defines the end of the loop. In this case, because the loop

exits when docount is equal to 1, the ‘*IDN?’ query on row 4 is never executed; instead, the loop exits to row 6

and executes the command on that row.

The above example is similar to the previous example, except on row 3, exitdo is set to exit the loop when

docount = 2. In this case, the loop will pass through row 4 on the first iteration of the loop because on the first

iteration of the loop, docount is equal to 1. Therefore, the ‘*IDN?’ query is sent to the instrument on the first

iteration of the loop. When docount is equal to 2 on the second iteration, execution jumps to row 6 and the

‘*IDN?’ query on that row is executed.

Multiple Loop Exit Conditions

The do loop provides the facility to perform a function the outcome of which can be based on several conditions.

An example of this capability is an operation that need to generate an outcome within a specific amount of time

or number of tries, such as a SINAD search. If the outcome takes an inordinate amount of time, or is not

attainable at all, the do loop can be set to ‘give up’ after a specific amount of time has passed.

VIP Tool Programming Language Reference

Page 83

The above example depicts a simple Do Loop that lowers the generator level of an instrument until the

measured SINAD level of the unit under test is less than 12 dB. The generator level is first set at -100 dBm on

row 2. For each iteration of the loop, the generator level is lowered 1 dB. On row 7, a SINAD measurement is

taken, and, on row 8, exitdo is set to exit the loop when the SINAD measurement is less than 12 dB.

The above Do Loop adds an additional condition for exiting the SINAD do loop. On row 10, the loop is set to exit

if docount is equal to 10. In other words, this loop is set to either find the generator level that produces a SINAD

measurement of less than 12 dB, or ‘give up’ after 10 tries and move on. In the example, the loop exits before

the less than 12 dB SINAD reading is attained.

The example above adds a third condition to the SINAD Do Loop. On row 3, a timer is set before the loop

begins. On row 12, an additional exitdo condition is set: if the amount of time elapsed since the loop started is

greater than 5 seconds, the loop will exit. Therefore this loop sets 3 conditions for the measurement: the loop

will exit if the SINAD reading is less than 12 dB, the loop will exit if it has tried 10 times to find the measurement,

or the loop will exit if it has run more than 5 seconds. In this case, the loop exits after the elapsed time has

exceeded 5 seconds.

VIP Tool Programming Language Reference

Page 84

IF Statement

IF/ElseIF/Else/Endif

Command (Argument) Syntax:

If (first value condition second value) Conditional statement for executing following row(s).

Elseif (first value condition second value) Optional conditional statement for executing following row(s).

Else (no argument) Optional. Executes following rows if no previous IF condition has been met.

Endif (no argument) Defines the end of the IF block.

IF, ELSEIF, ELSE and ENDIF are not case sensitive. These keywords are used to construct a conditional IF

Block. The IF keyword defines the beginning of the block, and uses as its argument a conditional statement. If

the defined condition is true, the rows following the IF statement are executed. The optional ELSEIF statement

uses as its argument a conditional statement, which is a different set of conditions than those used for the IF

statement. If the defined condition is true, the rows following the ELSEIF statement are executed. The optional

ELSE statement defines the rows that will be executed if no previous conditional statement is true. The required

ENDIF statement defines the end of the IF Block.

The IF, ELSEIF, ELSE and ENDIF keywords are not case sensitive.

The table below lists the conditional operators used by the IF and ELSEIF keywords.

Symbol Conditional Statement

= First value equal to second value is true

!= First value not equal to second value is true

> First value greater than second value is true

>= First value greater than or equal to second value is true

< First value less than second value is true

<= First value less than or equal to second value is true

With the exception of the ‘=’ and ‘!=’ operators, the values evaluated by the conditional statements must be

numerical. In the case of the ‘=’ and ‘!=’ operators, the values used for comparison can be either text or

numerical.

The above example demonstrates using a text value in the conditional statement. On row 3, the IF statement

becomes true when the contents of the variable ‘[system]’ are equal to “Analog Duplex”.

VIP Tool Programming Language Reference

Page 85

The above example depicts a simple IF block. The instrument’s RF generator is set to an output level of -112

dBm and a SINAD measurement is taken. On row 5, the IF keyword’s conditional argument checks to see if the

SINAD value is less than 12 dB. Because the measured SINAD value is 11.35, less than 12, the conditional

argument evaluates as true, therefore the ‘*IDN?’ query on row 6 is executed.

In the above example, the generator level is changed to -110 dBm. The same IF condition as the previous

example is used. In this case, the SINAD reading is 13.44, greater than 12, so the IF condition is evaluated as

false. Because the IF condition evaluates as false, the ‘*IDN?’ query on row 6 is not executed. Instead,

execution will jump to the line immediately following the ENDIF keyword, which defines the end of the IF Block

statement.

The illustration above depicts the use of the ELSE keyword. If all evaluations before the ELSE keyword are

false, the commands between the ELSE keyword and the ENDIF keyword will be executed. In the case above,

the IF statement is evaluated as false, so the ‘*IDN?’ query on row 8 is executed. If the IF statement on row 5

had evaluated as true, execution of the script would have executed the ‘*IDN?’ query on row 6, then jumped to

row 10 immediately following the ENDIF statement, thereby bypassing the ‘*IDN?’ query on row 8.

The ELSEIF keyword argument is evaluated if any previous conditional statement in the IF block evaluates as

false. The ELSEIF keyword can be used multiple times, but must always follow the IF keyword, which

establishes the beginning of the IF statement. In the above example, the IF statement on row 5 evaluates as

false. The ELSEIF statement on row 7 evaluates as true, so the ‘*IDN?’ query on line 8 is executed. Execution

of the script then jumps to row 12, the row immediately following the ENDIF keyword.

VIP Tool Programming Language Reference

Page 86

Flow Control, Messages and Forms

Delay Function

Delay

Command (Argument) Syntax:

Delay (value in seconds) Creates a pause in script execution for the time value defined by the argument.

The delay function provides a means to introduce a time delay between commands of a script. Generally, this

function is used to allow the instrument to complete processing of a previous command before moving on to the

next command in a script.

The argument for the delay function is represented in seconds. Decimal values are allowed in order to introduce

delay control in milliseconds. For example, a delay argument of 0.100 will result in a delay of 100 milliseconds.

The argument can be entered directly or assigned from a variable, tag or cell assignment.

In the above example, a tag called <thisdelay> is assigned the value of 4 on a sheet called ‘Calc’. Additionally,

cell B1 of the ‘Calc’ sheet has a value of 3. On row 2 of the script, the variable ‘mydelay’ is assigned the value of

2. When the script is run, the delay value is obtained from the ‘mydelay’ value on row3, the delay value is

obtained from the <thisdelay> tag value on row 4, the delay value is read directly from the “Calc” sheet cell B1

on row 5 of the script, and on row 6 of the script, the delay value of 0.5 seconds is entered directly.

The delay command is not case sensitive

The delay value can be a positive integer or positive decimal value

VIP Tool Programming Language Reference

Page 87

Schedule Function

Schedule

Command (Argument) Syntax:

schedule (target time in hours:minutes:seconds) Pauses execution until computer time matches target time.

The schedule command is used to pause execution of a script until the computer’s time matches the time

entered in the argument column for schedule command. This allows the script to perform a function at a specific

time of day. Schedule can pause execution for as long as 24 hours.

When the schedule command is encountered by the script, a message displaying the remaining time before

execution resumes will appear, and the row color will alternate between green and purple until execution of the

program resumes. The schedule keyword is not case sensitive.

End Function

End

Command (Argument) Syntax:

end (no argument) Halts execution of script when invoked.

When encountered by the script, the end command halts execution of the script; it has the same effect as a

script encountering an empty row.

The end command can be placed within a script to stop execution of the script based upon a conditional

statement.

The end command is not case sensitive.

In the above example, rows 2 and 3 are executed by the script, but the script halts execution on row 4 when the

end keyword is encountered. Therefore, the command on row 5 was not executed.

VIP Tool Programming Language Reference

Page 88

Custom Dynamic Message Box

Display_Message /Message1/Message2/Close_Message

Command (Argument) Syntax:

Display_message (No argument) Opens the display_message text box.

Message1 (message 1 as text, variable, tag or cell assignment) Places the value of its argument as the first (top

line) message on the display_message text box.

Message2 (message 2 as text, variable, tag or cell assignment) Places the value of its argument as the second

(bottom line) message on the display_message text box.

Close_Message (no argument) Closes the display_message text box.

Display_message provides a method of opening a message box and dynamically displaying two lines of

messages. Executing display_message opens a modeless text box. This means that script execution will

continue while the message is displayed. The display_message text box will only close if is programmatically

closed using the close_message keyword, or if the Abort key is pressed.

The display_message text box displays two lines of text. The keyword message1 is used to generate the first

line of text, using the value held by its argument as the text value to be displayed. The argument can be in the

form of direct text entry or a value held by a variable, tag, or cell assignment. The display_message text box

must be first displayed by executing the display_message keyword before using message1 to define the first line

of text in the display_message text box. If message1 is executed before the display_message text box is

displayed, the command will generate an error.

The keyword message2 is used to generate the second line of text, using the value held by its argument as the

text value to be displayed. The argument can be in the form of direct text entry or a value held by a variable,

tag, or cell assignment. The display_message text box must be first displayed by executing the

display_message keyword before using message2 to define the second line of text in the display_message text

box. If message2 is executed before the display_message text box is displayed, the command will generate an

error.

The close_message keyword is used to close the display_message text box. Close_message can only be used

if a display_message text box has first been opened by executing the display_message keyword, otherwise

executing close_message will generate an error.

Only one display_message box can be active at any given time.

The messages displayed on the display_message text box can be dynamically changed while the

display_message text box is open. For example, if the currently displayed message1 is “Hello”, executing

message1 with the argument “world” will replace the first line with “world”.

VIP Tool Programming Language Reference

Page 89

The above example depicts the basic syntax for generating a display_message text box. On row 2, the

display_message keyword is used to open the text box. On row 3, the message1 keyword is used to generate

the first line of text with its argument “This is message 1”. On row 4, the message2 keyword generates the

second line of text with its argument “This is message 2”. Row 5 introduces a delay of 5 seconds, so the

message will remain displayed for 5 seconds. On row 6, the close_message keyword removes the

display_message text box after the 5 second delay has elapsed.

The message2 keyword can be executed without first executing message1, but, to avoid errors, the

display_message keyword must always be executed before executing message1, message2 or close_message.

Above, the same result as the first example is accomplished, but this example uses variables as arguments for

message1 and message2.

On row 2, the variable ‘[mymessage_1]’ is assigned the value of “This is message 1”. On row 3, the variable

‘[mymessage_2]’ is assigned the value of “This is message 2”.

On row 5, message1 uses the variable ‘[mymessage_1]’ as the argument for the message1 keyword. On row 6,

message2 uses the ‘[mymessage_2]’ variable as the argument for the message2 keyword.

VIP Tool Programming Language Reference

Page 90

Above it can be seen that the argument for message1 or message2 can be a text value (as seen on rows 2 and

3). On rows 5 and 6, variables are used for the message arguments. Row 8 uses a tag to define the message1

argument, and row 9 uses a cell assignment to define the message2 argument. The following illustration

demonstrates the use of dynamic messages in the display_message text box. The display_message keywords

are not case sensitive.

The message box is opened on row 6. After the message box is opened, the script enters a Do Loop on row 8.

Each time the Do Loop iterates, counter1 is incremented by .0125. The value of counter1 is assigned as the

argument to the instrument RCI receiver frequency command on row 11. On row 10, this same value is

concatenated with the text “Receiving “, and that concatenated value is used as the argument for the message1

keyword. The result is, every time the DO Loop iterates, the message box updates message1 with the

frequency that the instrument’s receiver is tuned to.

VIP Tool Programming Language Reference

Page 91

The Do Loop contains a conditional IF statement on row 14 that checks to see if a variable that holds the value

of a power reading is greater than -70 dBm. In the example above, the IF statement becomes true while the

frequency value, held by counter1, is 150.5375. Because the IF condition is true, the message2 keyword on row

15 is executed. The argument for the message2 keyword is a concatenation of the phrase “Signal detected at“

and the value held by counter1. Therefore, when the message2 keyword is executed, the phrase “Signal

detected at 150.5375” is displayed on the message box.

Wait for Transmit On Dynamic Message Box

Wait_For_Transmit_On

Command (Argument) Syntax:

Wait_for_Transmit_On (text, variable, tag, or cell assignment) Generates a message box that displays the

message defined in its argument and pauses execution of the script. After the message box is generated,

wait_for_transmit_on monitors the power meter of the instrument, and, when a power level over 90 mW is

detected, the message box is closed and execution of the script resumes.

Wait_for_transmit_on is a method for pausing execution of the script and instructing the operator to key a

transmitter connected to the RF power input of the instrument to allow a script to perform transmitter tests while

the transmitter is transmitting. When RF power is detected by the instrument’s power meter,

wait_for_transmit_on automatically un-pauses execution of the script.

The argument for wait_for_transmit_on supplies the text message for the message box. It can be entered as

either text or the value held by a variable, tag or cell assignment.

The wait_for_transmit_on keyword is not case sensitive.

VIP Tool Programming Language Reference

Page 92

In the above example, the text “key the radio” is entered as the message for the wait_for_transmit_on message

box. The text can optionally be enclosed in double quotations.

Above, a cell assignment is used to supply the text to be displayed in the wait_for_transmit_on message box.

The cell assignment “(examples_A1)” points the contents in cell A1 of an embedded sheet in the VIP Tool

workbook called “Examples”.

In the illustration above, the contents of a cell assigned the tag ‘<powmess>’ are assigned as the message to be

displayed on the wait_for_transmit_on message box. The tag can reside on any report sheet.

The above illustration demonstrates that a variable can hold the value to be assigned as the text in the

wait_for_transmit_on message box. On row 7, the variable ‘[mess]’ is used to supply the two-line text “Select

VIP Tool Programming Language Reference

Page 93

RPTR1 and key the radio”. In this case, the variable ‘[mess]’ was built up using concatenation. On row 4, the

double quotations symbol was entered in the argument cell, followed by the key combination ALT-ENTER, which

placed a carriage return after the first double quotes. This is followed by the text “and key the radio”, followed by

an ending double quotations symbol. This method is useful for adding a second line to the wait_for_transmit_on

message. The rules for entering the argument to the wait_for_transmit_on keyword are identical to the rules

used for entering the argument for the pause keyword; refer to the section of this manual describing the pause

keyword and the section entitled ‘Concatenation’ for additional details.

Wait for Transmit Off Dynamic Message Box

Wait_For_Transmit_Off

Command (Argument) Syntax:

Wait_for_Transmit_Off (text, variable, tag, or cell assignment) Generates a message box that displays the

message defined in its argument and pauses execution of the script. After the message box is generated,

wait_for_transmit_off monitors the power meter of the instrument, and, when a power level over 90 mW is

detected, the message box is closed and execution of the script resumes.

Wait_for_transmit_off is a method for pausing execution of the script and instructing the operator to key a

transmitter connected to the RF power input of the instrument to allow a script to perform transmitter tests while

the transmitter is transmitting. When RF power is detected by the instrument’s power meter,

wait_for_transmit_off automatically un-pauses execution of the script.

The argument for wait_for_transmit_off supplies the text message for the message box. It can be entered as

either text or the value held by a variable, tag or cell assignment.

The wait_for_transmit_off keyword is not case sensitive.

In the above example, the text “Un-key the radio” is entered as the message for the wait_for_transmit_off

message box. The text can optionally be enclosed in double quotations.

VIP Tool Programming Language Reference

Page 94

Above, a cell assignment is used to supply the text to be displayed in the wait_for_transmit_off message box.

The cell assignment “(examples_A2)” points the contents in cell A2 of an embedded sheet in the VIP Tool

workbook called “Examples”.

In the illustration above, the contents of a cell assigned the tag ‘<unkeymess>’ are assigned as the message to

be displayed on the wait_for_transmit_off message box. The tag can reside on any report sheet.

The above illustration demonstrates that a variable can hold the value to be assigned as the text in the

wait_for_transmit_off message box. On row 5, the variable ‘[mess]’ is used to supply the text “Unkey the radio

and select RPTR1”. In this case, the variable ‘[mess]’ was built up using concatenation. The rules for entering

the argument to the wait_for_transmit_off keyword are identical to the rules used for entering the argument for

the pause keyword; refer to the section of this manual describing the pause keyword and the section entitled

‘Concatenation’ for additional details.

VIP Tool Programming Language Reference

Page 95

Wait for Audio Level Dynamic Message Box

Setaudio_{Units}_{Lower Limit}_{Upper Limit}

Command_{Units}_{Lower Limit} _{Upper Limit} (Argument) Syntax:

Setaudio_{units}_{lower limit}_{upper limit} (optional variable, tag, or cell assignment) Pauses execution of

the script and opens a message box. The function monitors the instrument audio level meter; when the audio

level meter falls within the window defined by the lower limit and upper limit in the units defined by the

placeholders, the message box closes and the audio level value that was detected within the measurement

window is reported in the Reply column and assigned to the optional argument variable, tag, or cell assignment.

When the message box closes, the script moves to the next step.

The command includes three placeholders which are defined by {units}, {lower limit} and {upper limit} in the

description. The {units} placeholder holds the value for the type of units being measured, the {lower limit}

placeholder holds the value for lower limit of the measurement window, and the {upper limit} placeholder holds

the value for upper limit of the measurement window. The placeholder values can be entered as direct entry or

assigned from a variable or tag. The argument specifies the destination of the value calculated by the keyword

and can be a variable, tag, or cell assignment. This syntax causes find_sinad to find the 12 dB SINAD level

between 11.5 and 12.5 dB. This example assigns the microvolt reading to the tag ‘<12dB_sinad_uv>’. This

tag’s value appears on a report sheet cell to which the tag is assigned.

Setaudio_{units}_{lower limit}_{upper limit} is not case sensitive.

Generally, measurements that rely upon the demodulated output of a radio such as SINAD and distortion require

that the audio level be at a specific value. Setaudio is used as an aid to set the demodulated output of a radio to

the level required for a test. When setaudio is executed, the script will pause at its current point of execution and

display a message prompting the user to adjust the volume level of the Device Under Test (DUT) to a value

between a lower and upper limit. The lower and upper limits provide a window that the audio level must fall into

before the message box is removed from view and the script can continue moving through the test procedure.

Below the “Adjust volume” prompt, the setaudio message will provide live measurements taken by the

instrument’s audio level meter. This measurement will update as the audio level changes when the volume

control of the radio is adjusted up or down.

VIP Tool Programming Language Reference

Page 96

The RF I/O connector of the test instrument must be connected to the antenna connector of the radio receiver. If

an Over The Air (OTA) connection is required, connect the instrument RF I/O connector to an antenna instead of

making the direct connection pictured above.

The demodulated audio output of the radio must be connected to the audio input connector of the instrument.

Generally, this connection is from the speaker output of the radio, and the use of a breakout box may be

required to gain access to this signal.

Before setaudio is used, the script must perform the following steps:

1. Set the instrument’s RF generator frequency to the radio’s receiver frequency

2. Set the output level of the instrument’s RF generator so that the receiver can receive it clearly

3. Modulate the instrument’s RF generator with the type of modulation required by the radio

4. Modulate the RF generator with any squelch tones required to un-squelch the radio receiver

5. Modulate the instrument’s RF generator at the modulation level required by the test

6. Route the instrument’s audio input to the instrument’s audio level meter

7. Enable the instrument’s RF generator

In the above example setaudio_V_0.9_1.1 sets the lower limit to 0.9 volts and the upper limit to 1.1 volts. In this

example, the volume control of the radio was adjusted down until its measured value was 0.973 volts, the

message box closed, and the found voltage was recorded as 0.973 volts.

The argument assigns the found voltage to a variable called ‘[audio_level]’. The argument could also be a tag

embedded in a report sheet, or a cell assignment, or, if the found audio level is no longer needed, the argument

could be blank.

VIP Tool Programming Language Reference

Page 97

Above, the variables ‘[lower]’ and ‘[upper]’ are assigned ‘0.8’ and ‘0.95’ respectively. The variables are then

used as placeholders in the setaudio command on row 4, setting the lower limit to 0.8 volts and the upper limit to

0.95 volts.

In the example above, the unit of measurement for setaudio is set to dBm. In this case, the audio level meter of

the instrument must be set to measure the audio output of the radio to dBm.

Above, the variable ‘[units]’ is assigned the value ‘dbm’, and is used as the placeholder that sets the units of

measurement in setaudio. The cell assigned the tag ‘<lowerlimit>’ contains the value ‘1.28’ and the cell

assigned the tag ‘<upperlimit>’ contains the value ‘3.29’. Therefore, the setaudio message will close when the

measured audio level is between 1.28 dBm and 3.05 dBm.

Pause Message Box

Pause

Command (Argument) Syntax:

Pause (optional pause text message) Displays a message box that displays the text argument as the message

along with a ‘Continue’ button; pauses script execution until the ‘Continue’ button is pressed.

Pause is a method for pausing execution of the script so that the operator of the script can be directed to

perform a task before the script continues execution. For example, pause can be used to direct the operator to

set the channel of the radio before the script runs a sequence of measurements for that channel.

VIP Tool Programming Language Reference

Page 98

The pause message box is a modal message box. This means that script execution halts and does not continue

until the ‘Continue’ button is pressed on the pause message box. When this message box is open, the Abort

key cannot be used to stop execution of the script.

The text argument for pause is displayed as a message on the pause message box. If no argument is supplied

with the pause keyword, the default message “Click to continue” is displayed.

The pause keyword is not case sensitive.

In the above illustration, no message is suppled for the pause keyword. In this case, the message ‘Click to

continue’ is displayed. Execution is halted until the computer’s Enter key is pressed, or the mouse is used to

click the ‘Continue’ button.

In the above example, the text “Test Complete” is entered directly as the argument for the pause keyword. This

results in the text “Test Complete” to appear as the pause message.

Variables can be used to hold the pause message text argument. In the above example, the variable

‘[my_message]’ is assigned the text “Test Complete”. On row three, ‘[my_message]’ is supplied as the argument

for the pause keyword. This results in “Test Complete” being displayed in the pause message box.

VIP Tool Programming Language Reference

Page 99

Tags can be used to hold the pause message text argument. In the above example, the tag ‘<mymess>’, which

exists on another sheet, is assigned the text “Test Complete”. On row 2, ‘<mymess>’ is supplied as the

argument for the pause keyword. This results in “Test Complete” being displayed in the pause message box.

Cell assignments can be used to hold the pause message text argument. In the above example, the cell

assignment ‘(examples_b1)’, which addresses cell B1 on an embedded sheet called ‘Examples’, holds the text

“Test Complete”. On row 2, ‘(examples_b1)’ is supplied as the argument for the pause keyword. This results in

“Test Complete” being displayed in the pause message box.

The argument of the pause keyword be concatenated to generate different prompts within a loop. In the above

example, a For Next loop is used to sequentially address multiple tags located on another sheet. The integral

For Next counter, nextcount, is used to address which tag is used, based upon the current count of the For Next

VIP Tool Programming Language Reference

Page 100

loop. On row 4, the text “Set channel to “ is concatenated with the currently addressed tag. In the illustration,

nextcount has counted up to, and holds the value of, ‘5’, therefore the tag ‘<mymess_5>’ is currently addressed.

The cell ‘<mymess_5>’ is assigned to holds the text “Station 7”, so, when concatenated with the contents of

‘[my_mess]’, the outcome is “Set channel to Station 7”, which appears in the pause message box.

Using ALT-ENTER to Introduce Carriage Returns for Multi-Line Pause Messages

When the cell in the argument column is selected, pressing ALT-Enter on the computer keyboard will insert a

carriage return into the cell. This carriage return can be used in the argument for the pause keyword or held

within a text variable. On row 2, the double quotes symbol was entered. After that, ALT-ENTER was pressed to

introduce a carriage return. The text “Power on the radio.” was entered afterwards, followed by the double

quotes. The carriage return and text are assigned to the ‘[my_mess] variable.

The argument of the pause keyword can include concatenated text syntax. In the above example, the contents

of the variable ‘[my_mess]’ and ‘[my_mess2]’ are concatenated in the argument for the pause keyword on row3.

NOTE: Note that, because ‘[my_mess] contains the carriage return, it appears in the message box on
a second line.

A variable can contain a carriage return with no accompanying text. Up to two carriage returns can be used in

the pause message box. In the above example, two carriage returns are assigned to the variable ‘[mycr]’. The

carriage returns were entered by selecting the argument cell, entering the double quotations symbol, then by

pressing the ALT-ENTER key combination twice. After entering the carriage returns, the double quotations

symbol was typed in. The variable ‘[mymess2]’ is created by concatenating the variable ‘[mycr]’, which contains

the carriage returns, with the text “I’m clear down here” on row 4. On row 5, the variables ‘[mymess]’ and

‘[mymess2] are concatenated in the argument for the pause keyword to form the message displayed in the

illustration.

VIP Tool Programming Language Reference

Page 101

Yes/No Selection Message Box

Query_Yes_No / Answer_Yes_No

Command (Argument) Syntax:

Query_yes_no (optional query_yes_no text message) Displays a message box that displays the text argument

as the message along with ‘Yes’ and ‘No’ buttons. Pauses script execution until the ‘Yes’ or ‘No’ button is

pressed. Stores either ‘Yes’ or ‘No’ answer, depending on which button is pressed.

Answer_yes_no (variable, tag or cell assignment) Assigns ‘Yes’ or ‘No’ result from the last query_yes_no

message box executed to a variable, tag, or cell assignment.

Query_yes_no is a method for pausing execution of the script and allowing the operator to enter either a ‘Yes’ or

‘No’ response. For example, query_yes_no can be used to determine if a radio is clearly demodulating a tone or

not by supplying a message asking the operator if the tone can be heard clearly or not. The operator can

respond to the message by clicking either the ‘Yes’ or ‘No’ button on the query_yes_no message box.

Answer_yes_no provides a method to assign the ‘Yes’ or ‘No’ response of the query_yes_no message box to a

variable, tag, or cell assignment. The response can then be used to branch the script down a specific path,

depending on the ‘Yes’ or ‘No’ value.

The query_yes_no message box is a modal message box. This means that script execution halts and does not

continue until either the ‘Yes’ button or ‘No’ button is pressed. When this message box is open, the Abort key

cannot be used to stop execution of the script.

The text argument for query_yes_no is displayed as a message on the query_yes_no message box. If no

argument is supplied with the query_yes_no keyword, the default message “Click Yes or No to continue” is

displayed. Query_yes_no is not case sensitive.

Answer_yes_no provides a method to assign the results of the last query_yes_no message executed to the

variable, tag, or cell assignment that is supplied as an argument to answer_yes_no. The value generated by the

query_yes_no message box is either ‘Yes’ or ‘No’. The answer_yes_no keyword is not case sensitive, but the

‘Yes’ or ‘No’ response assigned by answer_yes_no to a variable, tag or cell assignment is strictly case sensitive:

‘Yes’ is capitalized and ‘No’ is capitalized, just as it appears in this text. This is important to remember when

using either response in conditional statements.

VIP Tool Programming Language Reference

Page 102

In the above example, the query_yes_no keyword is entered without an argument on row 2, so the default

message is displayed on the message box. In this example, the ‘Yes’ button was pressed, which closed the

message box and displayed ‘Yes’ in the Reply column.

The illustration above depicts the query_yes_no keyword entered on row 2 with the text argument “Can you hear

the tone?”. When the keyword is executed, the message box displays the argument text. Pressing the ‘No’

button caused the message box to close and ‘No’ to be displayed in the Reply column.

The argument syntax for the query_yes_no keyword can take the form of entering the text directly, or a variable,

tag or cell assignment holding the text value can be used. In the above example, a message is concatenated

with a carriage return to form a multi-line message.

The rules for entering the argument to the query_yes_no keyword are identical to the rules used for entering the

argument for the pause keyword; refer to the section of this manual describing the pause keyword and the

section entitled ‘Concatenation’ for additional details.

VIP Tool Programming Language Reference

Page 103

Above, the use of answer_yes_no is depicted. In this case, the ‘Yes’ button of the query_yes_no message box

was pressed. On row 3, the answer ‘Yes’ is assigned to the variable ‘[myanswer]’. On row 4, the answer ‘Yes’ is

assigned to a tag called ‘<myanswer>’. On Row 5, ‘Yes’ is assigned to cell B1 on an embedded worksheet in

the VIP Tool workbook called ‘Examples’.

Applying the Result of Query_Yes_No to a Conditional Statement

To make use of the response to a query_yes_no message, the answer is applied to a conditional statement.

The response can be used in an IF or ELSEIF conditional statement, and the response can also be used as a

condition for exiting a DO Loop by using it in the exitdo conditional statement.

In the example above, the response of the query_yes_no message is assigned by the answer_yes_no keyword

to the variable ‘[myanswer]’ on row 3. Rows 4 through 8 form a conditional IF block. If the answer to the

query_yes_no message is ‘Yes’, then the ‘*IDN?’ query on row 5 is sent to the instrument. If the answer to the

query_yes_no message is ‘No’, then the ‘*IDN?’ query on row 7 is sent to the instrument. In this example, the

answer to the query_yes_no message was ‘Yes’, so the ‘*IDN?’ query on row 5 was sent to the instrument.

The above illustration presents the same section of code used in the previous example. In this case, the answer

to the query_yes_no message was ‘No’, so the ‘*IDN?’ query on row 7 was sent to the instrument.

VIP Tool Programming Language Reference

Page 104

Choice Message with One Button and Cancel

Display_One_Button /Button1/Button1_Val

Command (Argument) Syntax:

Display_one_button (one button message as text, variable, tag or cell assignment) Displays a message box that

contains button that is assigned a label in the script (referred to as button1), and a button labeled ‘Cancel’.

Pauses script execution until button1 or the ‘Cancel’ button is pressed.

Button1 (button 1 label as text, variable, tag or cell assignment) Assigns the value of its argument as the label for

button1 on the display_one_button text box.

Button1_val (variable, tag or cell assignment) Assigns ‘True’ if button1 is selected or ‘False’ if the ‘Cancel’ button

is selected to the variable, tag or cell assignment used as an argument for the button1_val keyword.

Display_one_button provides a method to assign a ‘True’ or ‘False’ text response as a means of allowing the

operator to provide a decision when a script is running. The display_one_button message box provides the

means to provide a message to the operator and the means to label one button with a text value determined by

the programmer. This configurable button is referred to as button1. When button1 is pressed, the message box

closes and the output of button1, expressed as button1_val, is set to the text value of ‘True’. A ‘Cancel’ button is

also present on the display_one_button message box. When the ‘Cancel’ button is pressed, the message box

closes, and the output of button1 is set to the text value of ‘False’.

The button1_val keyword is used to transfer the ‘True’ or ‘False’ output of the display_one_button message box

to the variable, tag or cell assignment used as its argument.

The display_one_button message box is a modal message box. This means that script execution halts and

does not continue until either button1 or the ‘Cancel’ button is pressed. When this message box is open, the

Abort key cannot be used to stop execution of the script.

The text argument for display_one_button is displayed as a message on the display_one_button message box.

The text argument for the button1 keyword is used to provide a label for button1. It is imperative that the button1

keyword assign a label to button1 before executing the display_one_button keyword to display the message box,

otherwise button1 will appear without a label on the message box.

The display_one_button, button1, and button1_val keywords are not case sensitive. However, the ‘True’ or

‘False’ response assigned by button1_val to a variable, tag or cell assignment is strictly case sensitive: ‘True’ is

capitalized and ‘False’ is capitalized, just as it appears in this text. This is important to remember when using

either response in conditional statements.

VIP Tool Programming Language Reference

Page 105

In the above illustration, the button1 keyword on row 2 is provided the text argument “Run Digital”, which labels

button1 with that text. On row 3, the display_one_button keyword is provided the text argument “Select ‘Run

Digital’ to run digital tests.”, which provides the message text for the display_one_button text box and opens the

message box. In this example, button1 (labeled ‘Run Digital’) is pressed, so on row 4, the button1_val keyword

assigns the text value of “True” to the variable ‘[myanswer]’.

In the above example, the same script exists. However, when this script was run, the ‘Cancel’ button was

pressed. Therefore, the button1_val keyword assigns the text value of ‘False’ to the ‘[myanswer]’ variable.

The argument syntax for both the button1 and display_one_button keywords can take the form of entering the

text directly, or a variable, tag or cell assignment holding the text value can be used.

In the above example, on row 4 the button1 keyword uses an argument that applies concatenation in the

argument column to generate the text ‘Check ID’ as the button1 label. On row 7, the display_one_button

keyword also uses concatenation to generate the two line message “Select ‘Check ID’ to query test set or press

cancel to skip this step.”

The rules for entering the argument for the button1 and display_one_button keywords are identical to the rules

used for entering the argument for the pause keyword; refer to the section of this manual describing the pause

keyword and the section entitled ‘Concatenation’ for additional details.

VIP Tool Programming Language Reference

Page 106

Applying the Result of Display_One_Button to a Conditional Statement

To make use of the response to the display_one_button message box, the answer is applied to a conditional

statement. The response can be used in an IF or ELSEIF conditional statement, and the response can also be

used as a condition for exiting a DO Loop by using it in the exitdo conditional statement.

In the example above, the response of the display_one_button message is assigned by the button1_val keyword

to the variable ‘[myanswer]’ on row 4. Rows 5 through 7 form a conditional IF block. If the answer to the

display_one_button message is ‘True’, then the ‘*IDN?’ query on row 6 is sent to the instrument. Otherwise, if

the ‘Cancel’ button were pressed, the value passed to ‘[myanswer]’ would be ‘False’, and no query would be

sent to the instrument.

Choice Message with Two Buttons and Cancel

Display_Two_Button /Button1/Button2/Button1_Val/Button2_Val

Command (Argument) Syntax:

Display_two_button (two button message as text, variable, tag or cell assignment) Displays a message box

that contains two button that are assigned labels in the script (referred to as button1 and button2), and a button

labeled ‘Cancel’. Pauses script execution until button1, button2, or the ‘Cancel’ button is pressed.

Button1 (button 1 label as text, variable, tag or cell assignment) Assigns the value of its argument as the label

for button1 on the display_two_button text box.

Button2 (button 2 label as text, variable, tag or cell assignment) Assigns the value of its argument as the label

for button2 on the display_two_button text box.

Button1_val (variable, tag or cell assignment) Assigns ‘True’ if button1 is selected, or ‘False’ if button2 or the

‘Cancel’ button is selected, to the variable, tag or cell assignment used as an argument for the button1_val

keyword.

Button2_val (variable, tag or cell assignment) Assigns ‘True’ if button2 is selected, or ‘False’ if button1 or the

‘Cancel’ button is selected, to the variable, tag or cell assignment used as an argument for the button2_val

keyword.

VIP Tool Programming Language Reference

Page 107

Button Pressed Button1_val Button2_val

Button1 True False

Button2 False True

Cancel False False

Display_two_button provides a method to assign a ‘True’ or ‘False’ text response as a means of allowing the

operator to provide a decision when a script is running from a choice of two customizable buttons and a “Cancel”

button. The display_two_button message box provides the means to provide a message to the operator and the

means to label two buttons with text values determined by the programmer. These configurable buttons are

referred to as button1 and button2. When button1 is pressed, the message box closes and the output of

button1, expressed as button1_val, is set to the text value of ‘True’ and the output of button2_val is set to a text

value of ‘False’. When button2 is pressed, the message box closes and the output of button2, expressed as

button2_val, is set to the text value of ‘True’ and the output of button1_val is set to a text value of ‘False’. A

‘Cancel’ button is also present on the display_two_button message box. When the ‘Cancel’ button is pressed,

the message box closes, and the outputs of both button1 and button2 are set to the text value of ‘False’.

The button1_val keyword is used to transfer the ‘True’ or ‘False’ output of the display_two_button message box

to the variable, tag or cell assignment used as its argument.

The button2_val keyword is used to transfer the ‘True’ or ‘False’ output of the display_two_button message box

to the variable, tag or cell assignment used as its argument.

The display_two_button message box is a modal message box. This means that script execution halts and does

not continue until either button1, button2, or the ‘Cancel’ button is pressed. When this message box is open, the

Abort key cannot be used to stop execution of the script.

The text argument for display_two_button is displayed as a message on the display_two_button message box.

The text argument for the button1 keyword is used to provide a label for button1. The text argument for the

button2 keyword is used to provide a label for button2. It is imperative that the button1 and button2 keywords

assign a label to button1 and button2 before executing the display_two_button keyword to display the message

box, otherwise button1 and button2 will appear without labels on the message box.

The display_two_button, button1, button2, button1_val and button2_val keywords are not case sensitive.

However, the ‘True’ or ‘False’ responses assigned by button1_val and button2_val to variables, tags or cell

assignments is strictly case sensitive: ‘True’ is capitalized and ‘False’ is capitalized, just as it appears in this

text. This is important to remember when using either response in conditional statements.

VIP Tool Programming Language Reference

Page 108

In the above illustration, the button1 keyword on row 2 is provided the text argument “Rerun Test”, which labels

button1 with that text. On row 3, the button2 keyword is provided the text argument “Continue Test Sequence”,

which labels button2 with that text. On row 4, the display_two_button keyword is provided the text argument

“Frequency Test Failed”, which provides the message text for the display_two_button text box and opens the

message box. In this example, button2 (labeled ‘Continue Test Sequence’) is pressed, so on row 6, the

button2_val keyword assigns the text value of “True” to the variable ‘[answer2]’ while, on row 5, the button1_val

keyword assigns the text value of “False” to the variable ‘[answer1]’.

In the above example, the same script exists. However, when this script was run, button1 was pressed.

Therefore, the button1_val keyword assigns the text value of ‘True’ to the ‘[answer1]’ variable and the

button2_val keyword passes the text value of ‘False’ to the ‘[answer2]’ variable.

Using the same example, when the ‘Cancel’ button is pressed, both button1_val and button2_val pass the text

value of ‘False’ to their respective variables.

VIP Tool Programming Language Reference

Page 109

The argument syntax for the button1, button2 and display_two_button keywords can take the form of entering

the text directly, or a variable, tag or cell assignment holding the text value can be used.

In the above example, on row 5 the button1 keyword uses the value held by the ‘[mylabel]’ variable as its

argument, so the label for button1 is ‘Rerun Test’, the value held by ‘[mylabel]’. On row 6 the button2 keyword

uses an argument that applies concatenation in the argument column to generate the text ‘Continue Test

Sequence’ as the button2 label. On row 10, the display_two_button keyword also uses concatenation to

generate the two-line message “Frequency Failed. Cancel aborts test Sequence.”

The rules for entering the argument for the button1, button2, and display_two_button keywords are identical to

the rules used for entering the argument for the pause keyword; refer to the section of this manual describing the

pause keyword and the section entitled ‘Concatenation’ for additional details.

Applying the Results of Display_Two_Button to a Conditional Statement

VIP Tool Programming Language Reference

Page 110

To make use of the response to the display_two_button message box, the answers are applied to a conditional

statement. The responses can be used in an IF or ELSEIF conditional statement, and the responses can also

be used as conditions for exiting a DO Loop by using it in the exitdo conditional statement.

In the example above, the responses of the display_two_button message are assigned by the button1_val and

button2_val keywords to the variables ‘[answer1]’ and ‘[answer2]’ on rows 5 and 6. Rows 7 through 13 form a

conditional IF block. In the example, the answer to the display_two_button message was generated by button2

being pressed. Because of this, the value passed to the ‘[answer2]’ variable on row 6 is ‘True’, so the ELSEIF

statement on row 9 is true. This allows the subroutine ‘report_freq’ to be run, which is called from row 10.

If button1 were pressed, button1_val would pass the text value ‘True’ to the variable ‘[answer1]’, which would

cause the subroutine ‘freq_test’ to be called on row 8. If the ‘Cancel’ button were pressed, neither ‘[answer1]’ or

‘[answer2]’ would be assigned the value of ‘True’ and the script would stop at the end keyword on row 12.

VIP Tool Programming Language Reference

Page 111

Two Choice Check Box Message with Cancel

Display_Choice_Message /Choice1/Choice2/Choice1_Val/Choice2_Val

Command (Argument) Syntax:

Display_choice_message (two button message as text, variable, tag or cell assignment) Displays a message

box that contains two selection boxes that are assigned labels in the script (referred to as choice1 and choice2),

a button labeled ‘OK’ and a button labeled ‘Cancel’. Pauses script execution until the ‘OK’ button or the ‘Cancel’

button is pressed.

Choice1 (choice 1 label as text, variable, tag or cell assignment) Assigns the value of its argument as the label

for choice1 on the display_choice_message text box.

Choice2 (choice 2 label as text, variable, tag or cell assignment) Assigns the value of its argument as the label

for choice2 on the display_choice_message text box.

Choice1_val (variable, tag or cell assignment) Assigns ‘True’ if choice1 is selected to the variable, tag or cell

assignment used as an argument for the choice1_val keyword.

Choice2_val (variable, tag or cell assignment) Assigns ‘True’ if choice2 is selected to the variable, tag or cell

assignment used as an argument for the choice2_val keyword.

Display_choice_message provides a method of assigning a ‘True’ or ‘False’ text value as a means of allowing

the operator to select one, both or neither of two customizable choices presented on the message box. A button

labeled ‘OK’ is provided to accept the choice selection and close the message box, and a button labeled ‘Cancel’

is provided to discard selections and close the message box.

Choice1_val is used to pass the value of the choice1 selection to a variable, tag or cell assignment. If the

choice1 box was selected when the ‘OK’ button was pressed, choice1_val will pass the text value ‘True’; if

choice1 was not selected when the ‘OK’ button was pressed, choice1_val will pass the text value ‘False’.

Choice2_val is used to pass the value of the choice2 selection to a variable, tag or cell assignment. If the

choice2 box was selected when the ‘OK’ button was pressed, choice2_val will pass the text value ‘True’; if

choice2 was not selected when the ‘OK’ button was pressed, choice2_val will pass the text value ‘False’.

If the ‘Cancel’ key is pressed, choice1_val and choice2_val will pass the text value ‘False’, regardless of whether

they are selected or not when the ‘Cancel’ button is pressed.

The display_choice_message message box is a modal message box. This means that script execution halts

and does not continue until either the ‘OK button or the ‘Cancel’ button is pressed. When this message box is

open, the Abort key cannot be used to stop execution of the script.

The text argument for display_choice_message is displayed as a message on the message box. The text

argument for the choice1 keyword is used to provide a label for choice1. The text argument for the choice2

keyword is used to provide a label for choice2. It is imperative that the choice1 and choice2 keywords assign a

label to choice1 and choice 2 labels before executing the display_two_button keyword to display the message

box, otherwise choice1 and choice2 will appear without labels on the message box.

The display_choice_message, choice1, choice2, choice1_val and choice2_val keywords are not case sensitive.

However, the ‘True’ or ‘False’ responses assigned by choice1_val and choice2_val to variables, tags or cell

VIP Tool Programming Language Reference

Page 112

assignments is strictly case sensitive: ‘True’ is capitalized and ‘False’ is capitalized, just as it appears in this text.

This is important to remember when using either response in conditional statements.

In top portion of the above illustration, the choice1 keyword on row 2 is provided the text argument “Analog”,

which labels choice1 with that text. On row 3, the choice2 keyword is provided the text argument “Digital”, which

labels choice2 with that text. On row 4, the display_choice_message keyword is provided the text argument

“Select Tests to Perform”, which provides the message text for the choice message and opens the message

box. In this example, both choice1 and choice2 are selected and the ‘OK’ button is pressed to save the

selection.

In the bottom portion of the example, the results of pressing the ‘OK’ button can be seen. On row 5, the

choice1_val keyword assigns the text value of “True” to the variable ‘[selection1]’, and, on row 6, the choice2_val

keyword assigns the text value of “True” to the variable ‘[selection2]’.

VIP Tool Programming Language Reference

Page 113

The display_choice_message function provides the facility to select more than one option for branching a test

script. One, both or neither of the selections can be selected.

The argument syntax for the choice1, choice2 and display_choice_message keywords can take the form of

entering the text directly, or a variable, tag or cell assignment holding the text value can be used.

In the above example, on row 3 the choice keyword uses the value held by the ‘<system1>’ tag as its argument,

so the label for choice1 is ‘Analog’, the value held by ‘<system1>’. On row 4 the choice2 keyword uses the

value held by the ‘<system2>’ tag as its argument, so the label for choice2 is ‘Digital’, the value held by

‘<system2>’. On row 5, the display_choice_message keyword uses concatenation to generate the two-line

message “Select Tests to Perform Then Press OK”.

VIP Tool Programming Language Reference

Page 114

The rules for entering the argument for the button1, button2, and display_two_button keywords are identical to

the rules used for entering the argument for the pause keyword; refer to the section of this manual describing the

pause keyword and the section entitled ‘Concatenation’ for additional details.

Applying the Results of Display_Choice_Message to a Conditional Statement

To make use of the response to the display_choice_message box, the answers are applied to conditional

statements. The responses can be used in an IF or ELSEIF conditional statement, and the responses can also

be used as conditions for exiting a DO Loop by using it in the exitdo conditional statement.

In the example above, the responses of the display_choice_message box selections are assigned by the

choice1_val and choice2_val keywords to the variables ‘[selection1]’ and ‘[selection2]’ on rows 5 and 6. Rows 7

through 9 form a conditional IF block that will run the subroutine ‘run_analog’ if ‘[selection1]’ is assigned the

value of ‘True’. Rows 10 through 12 form a conditional IF block that will run the subroutine ‘run_digital’ if

‘[selection2]’ is assigned the value of ‘True’.

Test Info Entry Form

Display_Test_Info /Uut_SN/Operator_Info

Command (Argument) Syntax:

Display_test_info (no argument) Displays a message box that contains a field labeled ‘SN’, a field labeled

‘Operator’, a button labeled ‘OK’ and a button labeled ‘Cancel’. Pauses script execution until the ‘OK’ or ‘Cancel’

button is pressed. Stores alphanumeric data entered in the ‘SN’ and ‘Operator’ fields if the ‘OK’ button is

pressed. Does not store data entered in the fields if the ‘Cancel’ button is pressed.

UUT_sn (variable, tag or cell assignment) Assigns value entered in ‘SN’ field of the display_test_info message

box to a variable, tag or cell assignment.

Operator_Info (variable, tag or cell assignment) Assigns value entered in ‘Operator’ field of the display_test_info

message box to a variable, tag or cell assignment.

Display_test_info is a method for pausing execution of the script and allowing the operator to enter Unit Under

Test (UUT) serial number and operator identification info into a script. When the message is displayed, the

operator can select the ‘SN’ and ‘Operator’ fields and enter alphanumeric data into either or both fields.

Pressing the ‘OK’ button on the message box causes the message box to close and store the serial number and

operator information. Pressing the ‘Cancel’ button causes the message box to close and discard any

information that either field may contain.

The display_test_info message box is a modal message box. This means that script execution halts and does

not continue until either the ‘OK’ button or ‘Cancel’ button is pressed on the display_info message box. When

this message box is open, the Abort key cannot be used to stop execution of the script.

VIP Tool Programming Language Reference

Page 115

UUT_sn and operator_info are keywords that are used to pass the data to the variable, tag or cell assignment

that is used as the argument for the keyword. This data is useful for providing serial number and operator ID info

on a report sheet.

The display_test_info, UUT_sn, and operator_info keywords are not case sensitive.

In the above example, ‘123456789’ is entered in the ‘SN’ field and ‘2217SLS’ is entered in the ‘Operator’ field.

When the ‘OK’ button is pressed, the message box closes. On row 3, the uut_sn keyword transfers the

information from the ‘SN’ field to the tag ‘<mysn>’. On row 4, the operator_info keyword transfers the

information entered in the ‘Operator’ field to the tag ‘<myopinfo>.

On a separate embedded report sheet, the values transferred to the ‘<mysn>’ and ‘<myopinfo>’ appear in cells

that have those tags assigned to them.

In the above example, instead of pressing the ‘OK’ button, the ‘Cancel’ button was pressed. In that case, the

values entered in the ‘SN’ and ‘Operator’ fields is discarded, and there is no data to transfer to the ‘<mysn>’ and

‘<myopinfo>’ tags.

VIP Tool Programming Language Reference

Page 116

Numerical Entry Form

Display_Numform /Numform_Val

Command (Argument) Syntax:

Display_numform (number form message as text, variable, tag or cell assignment) Displays a message box

that contains a numeric field, a button labeled ‘OK’ and a button labeled ‘Cancel’. Pauses script execution until

the ‘OK’ or ‘Cancel’ button is pressed. Stores numeric data entered in the numeric field if the ‘OK’ button is

pressed. Does not store data entered in the numeric field if the ‘Cancel’ button is pressed.

Numform_val (variable, tag or cell assignment) Assigns value entered in the numeric field of the

display_numform message box to a variable, tag or cell assignment.

Display_numform is a method for pausing execution of the script and allowing the operator to enter a numeric

value into a script. When the message is displayed, the operator can select the numeric field and enter numeric

data into the field. Pressing the ‘OK’ button on the message box causes the message box to close and store the

numeric value. Pressing the ‘Cancel’ button causes the message box to close and discard any information the

numeric field may contain. If alphabetic data is entered in the numeric field, a message indicating only numeric

data is allowed will be displayed.

The display_numform message box is a modal message box. This means that script execution halts and does

not continue until the ‘OK’ button or ‘Cancel’ button is pressed on the display_numform message box. When this

message box is open, the Abort key cannot be used to stop execution of the script.

Numform_val is a keyword that is used to pass the data to the variable, tag or cell assignment that is used as the

argument for the keyword. This data is useful for entering numeric data into a script.

The display_numform and numform_val keywords are not case sensitive.

In the above example, the argument “Enter Radio Frequency” is applied to the display_numform keyword. This

results in the argument appearing on the display_numform message box.

The value “151.0125” is entered in the numeric field of the display_numform message box, and the “OK” button

is pressed. On row 3, the value entered in the numeric field of the display_numform message box is passed to

the variable ‘[myfreq]’ using the numform_val keyword.

VIP Tool Programming Language Reference

Page 117

The above illustration depicts the result when the ‘Cancel’ button is pressed. Any value entered in the numeric

field of the display_numform message box is discarded, and no value is assigned to the variable ‘[myfreq]’.

In the above example, alphabetic data has been entered in the numeric field of the display_numform message

box. In this case, the error message “Please enter a numeric value” is displayed. The operator must press the

‘OK’ button on the error message to proceed with running the script.

The argument syntax for the display_numform keyword can take the form of entering the text directly, or a

variable, tag or cell assignment holding the text value can be used. In the above example, a message is

concatenated with a carriage return to form a multi-line message.

The rules for entering the argument to the display_numform keyword are identical to the rules used for entering

the argument for the pause keyword; refer to the section of this manual describing the pause keyword and the

section entitled ‘Concatenation’ for additional details.

VIP Tool Programming Language Reference

Page 118

Text Entry Form

Display_Textform /Textform_Val

Command (Argument) Syntax:

Display_textform (text form message as text, variable, tag or cell assignment) Displays a message box that

contains an alphanumeric field, a button labeled ‘OK’ and a button labeled ‘Cancel’. Pauses script execution

until the ‘OK’ or ‘Cancel’ button is pressed. Stores alphanumeric data entered in the numeric field if the ‘OK’

button is pressed. Does not store data entered in the alphanumeric field if the ‘Cancel’ button is pressed.

Textform_val (variable, tag or cell assignment) Assigns value entered in the alphanumeric field of the

display_numform message box to a variable, tag or cell assignment.

Display_textform is a method for pausing execution of the script and allowing the operator to enter an

alphanumeric value into a script. When the message is displayed, the operator can select the alphanumeric field

and enter alphanumeric data into the field. Pressing the ‘OK’ button on the message box causes the message

box to close and store the alphanumeric value. Pressing the ‘Cancel’ button causes the message box to close

and discard any information the alphanumeric field may contain.

The display_textform message box is a modal message box. This means that script execution halts and does

not continue until the ‘OK’ button or ‘Cancel’ button is pressed on the display_textform message box. When this

message box is open, the Abort key cannot be used to stop execution of the script.

Textform_val is a keyword that is used to pass the data to the variable, tag or cell assignment that is used as the

argument for the keyword. This data is useful for entering alphanumeric data into a script, particularly for

entering data into a report when prompted.

The display_textform and textform_val keywords are not case sensitive.

In the above example, the argument “Enter radio notes” is applied to the display_textform keyword. This results

in the argument appearing on the display_textform message box.

The value “Radio is programmed with code plug 3.4.62B” is entered in the alphanumeric field of the

display_textform message box, and the “OK” button is pressed. On row 3, the value entered in the

alphanumeric field of the display_numform message box is passed to the variable ‘[mynotes]’ using the

textform_val keyword.

VIP Tool Programming Language Reference

Page 119

The above illustration depicts the result when the ‘Cancel’ button is pressed. Any value entered in the

alphanumeric field of the display_textform message box is discarded, and no value is assigned to the variable

‘[mynotes]’.

The argument syntax for the display_textform keyword can take the form of entering the text directly, or a

variable, tag or cell assignment holding the text value can be used. In the above example, a message is

concatenated with a carriage return to form a multi-line message.

The rules for entering the argument to the display_textform keyword are identical to the rules used for entering

the argument for the pause keyword; refer to the section of this manual describing the pause keyword and the

section entitled ‘Concatenation’ for additional details.

Message Positioning

Message_Horizontal /Message_Vertical/Center_Messages

Command (Argument) Syntax

Message_horizontal (Direct numerical entry 0.1 to 0.9) Positions all messages boxes and forms (except for

error messages) horizontally. The argument for message_horizontal only allows a direct entry of a numerical

value between 0.1 and 0.9. The value of 0.5 will center the message boxes horizontally. Values less than 0.5 will

position the message boxes progressively further to the left; values greater than 0.5 will position the message

boxes progressively further to the right. The settings entered by this command will remain valid until reset by

another message_horizontal message, or the keyword center_messages is executed. When a script begins

running, the default value of message_horizontal is 0.5.

Message_vertical (Direct numerical entry 0.1 to 0.9) Positions all text messages and forms (except for error

messages) vertically. The argument for message_vertical only allows a direct entry of a numerical value between

0.1 and 0.9. The value of 0.5 will center the message boxes vertically. Values less than 0.5 will position the

message boxes progressively toward the to the top of the display; values greater than 0.5 will position the

message boxes progressively toward the bottom of the display. The settings entered by this command will

remain valid until reset by another message_vertical message, or the keyword center_messages is executed.

When a script begins running, the default value of message_vertical is 0.5.

Center_messages (No argument) Resets the positions all messages boxes and forms to the center of the

display.

VIP Tool Programming Language Reference

Page 120

The Message_horizontal, message_vertical, and center_messages keywords are not case sensitive.

The above illustration depicts a message that is displayed after using message_horizontal with an argument

value of 0.2.

The preceding illustration depicts a message that is displayed after using message_vertical with an argument

value of 0.3.

VIP Tool Programming Language Reference

Page 121

The above illustration depicts a message that is displayed after using message_horizontal with an argument

value of 0.2 and message_vertical with an argument value of 0.3.

Special Functions

Automated Find SINAD Function

Find_{TargSINADdB}_SINAD_{Lower Limit}_{Upper Limit}

Command_{targSINADdb}_sinad_{Lower Limit} _{Upper Limit} (Argument) Syntax:

Find_{targSINADdb}_sinad_{lower limit}_{upper limit} (variable, tag or cell assignment) Finds receiver

SINAD value. Pauses execution of the script at its current step and displays the find_SINAD message. After

displaying the message, find_sinad performs a find SINAD algorithm by changing the RF generator of the

instrument and monitoring the instrument’s SINAD meter. When the target SINAD value, as defined by value

placed in the {targSINADdb} placeholder, falls between the lower limit and upper limit value, as defined by the

{lower limit} and {upper limit} placeholders, the message is removed and the RF generator level is returned in

dBm and microvolt values, separated by a comma. The return value can then be assigned to a variable, tag, or

cell assignment placed in the argument column for the command. When the message box closes, the script

moves to the next step.

The command includes three placeholders which are defined by {targSINADdb}, {lower limit} and {upper limit} in

the description. The {targSINADdb} placeholder holds the target value for SINAD measurement, the {lower limit}

placeholder holds the value for lower limit of the desired SINAD measurement, and the {upper limit} placeholder

holds the value for upper limit of the desired SINAD measurement. The placeholder values can be entered as

direct entry or assigned from a variable or tag. The argument specifies the destination of the value calculated by

the keyword and can be a variable, tag, or cell assignment.

NOTE: Any variable or tag assigned to a placeholder cannot have a space or an underline in its name.

Find_{targSINADdb}_sinad_{lower limit}_{upper limit} is not case sensitive.

VIP Tool Programming Language Reference

Page 122

Receiver SINAD, which is a measurement of receiver sensitivity, is specified as a value of SINAD in dB at a

specified RF input level. For example, a receiver may be specified to have 12 dB SINAD of at -118 dBm,

meaning that the receiver will measure 12 dB SINAD or better when the RF input level to the receiver

is -118 dBm. Sometimes a receiver may be specified at 10 dB SINAD. And, sometimes, the SINAD level is

defined in microVolts RF input instead of dBm.

The find_sinad function provides the flexibility of defining what the SINAD target is (for example 12 dB SINAD or

10 dB SINAD). The output of the find_sinad function allows the programmer to output the SINAD measurement

in dBm or microVolts by defining the output of the function in CSV format as follows: dbm,microvolt. If the

SINAD specification is in dBm, the programmer selects the first field of the response as the reply; if the SINAD

specification is in microVolts, the programmer selects the second field of the response as the reply.

The nature of a SINAD measurement is that it is taken at a very low RF input level, so the demodulated audio,

which the instrument uses to evaluate the receiver sensitivity, is a constantly varying signal. Therefore, a SINAD

measurement will ‘move around’ considerably over a limited range. The placeholder arguments {lower limit} and

{upper limit} provide a window of measurement that accommodates this movement. If the instrument detects a

SINAD measurement that falls between the lower limit and upper limit, the measurement is accepted,

whereupon the find_sinad function reports the reading, then terminates. The find_sinad function uses averaging

to prevent a momentary measurement from providing an inaccurate measurement. It is important to consider

that the window provided by the lower limit and upper limit definitions not be made too narrow – the

measurement may move around and never fall precisely within the window of measurement if the window is too

narrow. The find_sinad function will terminate its algorithm and fail the measurement if the SINAD measurement

cannot be accomplished in twenty steps of the algorithm or less. Typically, with proper setup of the window and

assuming a good receiver being measured, the find_sinad will accomplish the measurement in six or less steps.

The following syntax example is used to find 12 dB SINAD within a measurement window of 2 dB:

Find_12dB_SINAD_11_13

This syntax will cause the find_sinad algorithm to find a 12 dB SINAD reading that is between 11 and 12 dB,

which is a window of 2 dB.

The next example is used to find 10 dB SINAD within a measurement window of 1 dB:

Find_10dB_SINAD_9.5_10.5

This syntax will cause the find_sinad algorithm to find a 10 dB SINAD reading that is between 9.5 and 10.5 dB,

which is a window of 1 dB.

VIP Tool Programming Language Reference

Page 123

To run find_sinad, the RF I/O connector of the test instrument must be connected to the antenna connector of

the radio receiver.

The demodulated audio output of the radio must be connected to the audio input connector of the instrument.

Generally, this connection is from the speaker output of the radio, and the use of a breakout box may be

required to gain access to this signal.

The find_sinad message box opens automatically when the keyword is executed. The first line will indicate the

SINAD level the algorithm is to find, and the second line will update the SINAD reading of the current step of the

algorithm in the format dbm/microvolt.

Before find_sinad is used, the script must perform the following steps:

1. Set the instrument’s RF generator frequency to the radio’s receiver frequency.

2. Modulate the instrument’s RF generator with the type of modulation required by the radio.

3. Set the instrument’s modulation generator to the specified frequency (typically 1 kHz).

4. Set the instrument’s SINAD meter to measure the frequency of the modulation.

5. Modulate the RF generator with any squelch tones required to un-squelch the radio receiver.

6. Modulate the instrument’s RF generator at the modulation level required by the test.

7. Route the instrument’s audio input to the instrument’s audio level meter.

8. Enable the instrument’s RF generator.

VIP Tool Programming Language Reference

Page 124

In the above illustration, find_12db_sinad_11_13 is used to find 12 dB SINAD between 11 dB and 13 dB SINAD.

The argument assigns the dBm value of the RF generator to the variable ‘[12db_sinad_db]’ by defining reply1 as

the value to be assigned to the variable.

The example above uses the same command syntax as the previous example, but the argument differs in that it

assigns the microvolt reading to the variable by defining reply2 to be assigned to the variable.

The example above uses the syntax find_10dB_sinad_9_11 to find the 10 dB SINAD value between 9 dB and 11

dB SINAD. This example assigns the dBm reading to the tag ‘<10dB_sinad>’. This tag’s value appears on a

report sheet cell to which the tag is assigned.

VIP Tool Programming Language Reference

Page 125

In the above example, variables are used fill the placeholders of the find_sinad keyword. The variable ‘[sinlev]’

is assigned the value of “12dB” and is placed in the {targSINADdb} placeholder. The variable ‘[llimit]’ is assigned

the value of ’11.5’ and placed in the {lower limit} placeholder. The variable ‘[ulimit]’ is assigned the value of

’12.5’ and placed in the {upper limit} placeholder. This syntax causes find_sinad to find the 12 dB SINAD level

between 11.5 and 12.5 dB. This example assigns the microvolt reading to the tag ‘<12dB_sinad_uv>’. This

tag’s value appears on a report sheet cell to which the tag is assigned.

In the above example, the value of cells that have tags assigned to them are used to plug in the placeholder

values in the find_sinad keyword. The tag ‘<sinlev>’ is assigned to a cell that is holding the value ‘12db’, and

and is placed in the {targSINADdb} placeholder. The tag ‘<llimit>’ is assigned to a cell that is holding the value

‘11’, and is placed in the {lower limit} placeholder. The tag ‘<ulimit>’ is assigned to a cell that is holding the value

‘13’, and is placed in the {upper limit} placeholder. This syntax causes find_sinad to find the 12 dB SINAD level

between 11 and 13 dB. This example assigns the dbm reading to the tag ‘<12dB_sinad_uv>’. This tag’s value

appears on a report sheet cell to which the tag is assigned.

VIP Tool Programming Language Reference

Page 126

Watts to dBm Calculator

Watt_To_dBm_{Watts}

Command_{Watts} (Argument) Syntax:

Watt_to_dbm_{Watts} (variable, tag, or cell assignment) Converts a value in units of watts to units of dBm. The

command includes a placeholder, which is defined by {Watts} in the description, for the value to be converted.

The placeholder value can be entered as direct entry, or assigned from a variable or tag. The argument

specifies the destination of the value calculated by the keyword and can be a variable, tag, or cell assignment.

The Watt_to_dbm_{watts} keyword is provided to convert a value in Watts to a value in dBm without resorting to

using a calculation on a separate sheet. This serves to promote portability of a script because the script

contains the calculation and does not require linking to a sheet that may not exist in the current workbook.

The watt_to_dbm_{watts} keyword applies the following computation:

10 * Log10 ({watts} * 1000)

If the command is executed as watt_to_dbm_10, the following computation is resolved:

Watt_to_dbm_10 = 10 * Log10 (10 * 1000) = 40

This converts the value of 10 Watts, as entered in the {Watts} command placeholder, to 40 dBm.

The {Watts} place holder uses a variable or a tag to provide the Watts value to be converted.

NOTE: The name of the variable or tag cannot be an array, nor can it have the underline ‘_’ symbol as
part of the name of the variable or tag. If the name of the variable or tag contains an underline,
then the script will generate an error.

The Watt_to_dbm_{watts} keyword is not case sensitive.

In the above example, on row 2 the variable ‘[powWatts]’ is assigned the value of 10. On row 2, the value held

by ‘[powWatts]’ is converted to 40 dBm and assigned to the variable ‘[mypow_dbm]. On row 4, the cell with the

tag ‘<watts>’ assigned to it holds a value of ‘5’, and that value is converted to 36.99 dBm. On row 5, the value of

‘.001’ Watts, or 1 milliWatt, is included as part of the command in the form of watt_to_dbm_.001. 1 milliWatt is

converted to 0 dBm. On row 6, 1 watt is converted to dBm the same way with the syntax watt_to_dbm_1. 1

Watt is converted to 30 dBm.

NOTE: Note that conversion is still possible, and the converted value appears in the Reply column if
no argument is supplied to the keyword.

VIP Tool Programming Language Reference

Page 127

dBm to Watts Calculator

dBm_To_Watts_{dBm}

Command_{dBm} (Argument) Syntax:

dBm_to_watts_{dBm} (variable, tag, or cell assignment) Converts a value in units of dBm to units of Watts.

The command includes a placeholder, which is defined by {dBm} in the description, for the value to be

converted. The placeholder value can be entered as direct entry or assigned from a variable or tag. The

argument specifies the destination of the value calculated by the keyword and can be a variable, tag, or cell

assignment.

The dbm_to_watt_{dbm} keyword is provided to convert a value in dBm to a value in Watts without resorting to

using a calculation on a separate sheet. This serves to promote portability of a script because the script

contains the calculation and does not require linking to a sheet that may not exist in the current workbook.

The dbm_to_watt_{dbm} keyword applies the following computation:

10({dBm}/10) / 1000

If the command is executed as dbm_to_watt_40, the following computation is resolved:

dBm_to_watt_40 = 10({40}/10) / 1000 = 10

This converts the value of 40 dBm, as entered in the {dbm} command placeholder, to 10 Watts.

The {dbm} place holder uses a variable or a tag to provide the dBm value to be converted.

NOTE: The name of the variable or tag cannot be an array, nor can it have the underline ‘_’ symbol as
part of the name of the variable or tag. If the name of the variable or tag contains an underline,
then the script will generate an error.

The dBm_to_watt_{dbm} keyword is not case sensitive.

In the above example, on row 2 the variable ‘[powdBm]’ is assigned the value of 40. On row 2, the value held by

‘[powdBm]’ is converted to 10 Watts and assigned to the variable ‘[mypow_Watts]. On row 4, the cell with the

tag ‘<dbm>’ assigned to it holds a value of ‘37’, and that value is converted to 5.01 Watts. On row 5, the value of

‘0’ dBm is included as part of the command in the form of dBm_to_Watts_0. 0 dBm is converted to .001 Watts,

or one milliWatt. On row 6, 30 dB, is converted to Watts the same way with the syntax dBm_to_Watts_30. 30

dBm is converted to 1 Watt.

VIP Tool Programming Language Reference

Page 128

NOTE: Note that conversion is still possible, and the converted value appears in the Reply column if
no argument is supplied to the keyword. It should be noted that negative numbers can be used
in the placeholder, either directly or using a variable or tag. For example, dbm_to_watts_-3 will
convert -3 dBm to 0.5 milliwatts.

Audio Gain/Loss In dB Calculator

Db_Calc_{V1}_{V2}

Command_{V1} _{V2} (Argument) Syntax:

dB_calc_{v1}_{v2} (variable, tag, or cell assignment) Calculates gain or loss of voltage in dB. The command

includes two placeholders, which are defined by {v1} and {v2} in the description. The {V1} placeholder holds the

value for the measured voltage and the {V2} placeholder holds the value for the reference voltage. The

placeholder values can be entered as direct entry or assigned from a variable or tag. The argument specifies

the destination of the value calculated by the keyword and can be a variable, tag, or cell assignment.

The db_calc_{v1}_{v2} keyword is provided to convert the gain or loss of a voltage measurement in dB without

resorting to using a calculation on a separate sheet. This serves to promote portability of a script because the

script contains the calculation and does not require linking to a sheet that may not exist in the current workbook.

The db_calc_{v1}_{v2} keyword applies the following computation:

20 log (V1/V2)

Where V2 is the reference voltage and V1 is the measured voltage.

If the command is executed as db_calc_1_2, the following computation is resolved:

db_calc_1_2 = 20 log (1/2) = -6 dB

V2, the reference voltage, is greater than V1, the measured voltage, which results in a loss, expressed as -6 dB.

The {V1} and {V2} placeholders use a variable or a tag to provide the voltage values.

NOTE: The name of the variable or tag cannot be an array, nor can it have the underline ‘_’ symbol as
part of the name of the variable or tag. If the name of the variable or tag contains an underline,
then the script will generate an error.

The db_calc_{v1}_{v2} keyword is not case sensitive.

VIP Tool Programming Language Reference

Page 129

In the above example, on row 2 the variable ‘[V1]’ is assigned the value of ‘6’. On row 3 the variable ‘[V2]’ is

assigned the value of 3. Because the measured voltage is greater than the reference voltage, the calculated dB

value will be a positive number, which indicates that the dB value represents gain. On row 4, the dB value is

calculated using db_calc. The result is a gain of 6 dB, which represents a doubling of voltage. This value is

assigned to the variable ‘[myafdb]’.

On row 5, the values for the two voltages are entered directly. V1, the measured voltage, is ‘3’ and V2, the

reference voltage, is ‘6’. 3V is half the value of 6V, so the result is -6 6dB, which indicates a loss. B

On row 6, tags are used to represent the two voltages in the db_calc command. The tag ‘<measured>’ holds the

value of ‘2’ and is applied as V1 in the db_calc syntax. The tag ‘<reference>’ holds the value the value of ‘1’

dBm is applied as V2 in the db_calc syntax. “2” is twice the value of “1” so the calculated dB value is ‘6’.

On row 7, the measured value is ‘5.5’ and the reference value is ‘6’. ‘5.5’ is less than 6, so the output is a

negative value, indicating a loss. In this case, the calculated value is -.076 dB.

NOTE: Conversion is still possible, and the converted value appears in the Reply column if no
argument is supplied to the keyword.

Select A Cell for Viewing Function

Select_Cell

Command (Argument) Syntax:

Select_Cell (cell assignment) Selects the sheet and cell defined in its cell assignment argument and places the

row of the cell at the top of its worksheet. On the “Script” sheet, this command has no effect.

Select_cell is used as a tool for bringing a cell on a specific sheet into view. The sheet and cell to be viewed are

defined in its argument in the form of a cell assignment. If select_cell is executed while viewing the “Script”

sheet, the command will have no effect. However, if any sheet other than the “Script” sheet is being viewed

when select_cell is executed, the sheet defined in the argument for select_cell will be accessed, and the row of

the cell defined in the argument will be placed at the top of the sheet.

The select_cell keyword is not case sensitive.

In the above example, the argument for select_cell is the cell assignment “(test_A71)”. If the “Script” sheet is not

being viewed at the time select_cell is executed, the embedded sheet “Test” is brought into view and row 71 is

VIP Tool Programming Language Reference

Page 130

placed at the top of the display. In this example, cell A71 of the “Test” sheet, containing hook-up instructions, is

brought into view. Select_cell is useful when combined with a message box that will pause execution of the

script. The selected cell can be viewed for as long as necessary, then a message box button can be used to

resume operation of the script.

Transfer Trace Data to Another Sheet

Transfer_Trace

Command (Argument) Syntax:

Transfer_trace (row number of trace x data on trace results to simple cell assignment) Transfers trace data

from the Trace Data sheet to another sheet within the VIP Tool workbook. The argument specifies the row

number of the X data to be transferred from the Trace Data sheet, the keyword to and a simple cell assignment

of the starting cell the data will be transferred to. The function will transfer the X data to the sheet defined in the

cell assignment, starting at the designated cell, and filling in the data in each cell to the right. It then will copy the

Y data starting at the cell below the target cell, filling in the data in each cell to the right of that cell. Note that the

argument cannot substitute values with variables or tags; the row number of the X data must be entered

explicitly, and the cell assignment cannot be an array.

An example of transfer_trace syntax is as follows: transfer_trace 1 to (report_L1). This syntax will transfer the

trace data stored on rows 1 and rows 2 of the trace data sheet to rows 1 and 2 of the report sheet, starting in the

‘L’ column. Always designate the row of the trace data sheet containing X data, which is always the first row of

the two row XY data.

Transfer_trace is a utility that allows trace data to be copied to another sheet, such as a report sheet. This allows

data to be contained on one sheet, and there are no broken links if the sheet is exported and imported into

another VIP Tool workbook. Transfer_trace is not case sensitive.

In the above example, transfer_trace 1 to (report_L1) copies the XY trace data to a sheet within the VIP Tool

workbook named Report. The copied X data begins on row 1, column L of the Report sheet. The copied Y data

begins on row 2, column L of the report sheet.

VIP Tool Programming Language Reference

Page 131

Clear Range of Cells in a Row

Clear_Row

Command (Argument) Syntax:

Clear_row (number of cells to clear from simple cell assignment) Clear data from a range of cells on a single on

a sheet within the VIP Tool workbook. The argument specifies the number of cells to clear from the designated

row on the target sheet, the keyword from and a simple cell assignment of the starting cell the data erased from.

The function will clear data from the sheet defined in the cell assignment, starting at the designated cell, and

clearing the data in each cell to the right for the number of cells specified. Note that the argument cannot

substitute values with variables or tags; the row number of the X data must be entered explicitly and the cell

assignment cannot be an array.

An example of clear_row syntax is as follows: clear_row 560 from (report_L1). This syntax will clear the the data

stored in 560 cells on row 1 the report sheet, starting in the ‘L’ column.

Clear_row is a utility that allows data to be cleared from cells on another sheet, such as a report sheet. It can be

used in conjunction with Transfer_trace to clear previous trace data stored on a sheet when a new script is

executed. Clear_row is not case sensitive.

In the above example, clear_row 560 from (report_L2) removes the data from 560 cells in row 2 of the sheet

named Report, starting at cell L2 of the Report sheet.

Beep Function

Beep

Command (Argument) Syntax:

beep (no argument) Causes Windows tone to play through computer speakers.

When encountered by the script, beep will cause a ‘Windows’ tone to be played through the computer’s speaker.

The keyword beep is not case sensitive.

VIP Tool Programming Language Reference

Page 132

Time Function

Time

Command (Argument) Syntax:

Time (optional variable, tag, or cell assignment) If the argument is empty, prints the current time to the Reply

column. If a variable, tag, or cell assignment is put into the argument to receive data, assigns the current time to

the variable, tag, or cell assignment.

Time is a utility keyword that is used if the current time is required to be recorded in a report.

Time is placed in the Command column and a variable, tag, or cell assignment is placed in the Argument column

so that the time keyword can pass the current time value to the variable, tag, or cell assignment in 24 hour

hours:minutes:seconds format. The keyword time is not case sensitive.

Date Function

Date

Command (Argument) Syntax:

Date (optional variable, tag, or cell assignment) If the argument is empty, prints the current date to the Reply

column. If a variable, tag, or cell assignment is put into the argument to receive data, assigns the current date to

the variable, tag, or cell assignment.

Date is a utility keyword that is used if the current date is required to be recorded in a report.

Date is placed in the Command column and a variable, tag, or cell assignment is placed in the Argument column

so that the time keyword can pass the current time value to the variable, tag, or cell assignment in mm/dd/yyyy

format. The keyword date is not case sensitive.

VIP Tool Programming Language Reference

Page 133

Close and Open Socket Functions

Close_Socket/Open_Socket

Command (Argument) Syntax:

Close_socket (No argument) Closes the socket connection to the instrument.

Open_socket (No argument) Opens the socket connection to the instrument.

The VIP Tool constantly monitors the communication with the instrument while a socket is open. There may be

instances when the script is processing intensive tasks that do not require communication with the instrument,

such as long loops that gather information from other sheets or assign multiple values to variables and tags. In

these cases, closing the socket may speed up execution of these sections of the script. Close_socket and

open_socket are commands that can be used within a script to close then re-open the socket to an instrument.

These commands should be used sparingly and with care. These commands are only useful if extensive

computation that does not involve communication with the instrument is being executed by the script.

When a script is executed, the socket to the instrument is opened, allowing communication over Ethernet with

the instrument. Therefore, when the script is running, the socket is already open. If the script contains an

extensive block of computation that does not require communication with the instrument to send and receive

VIP Tool Programming Language Reference

Page 134

data to and from the instrument, the socket can be closed with the close_socket keyword. At the end of the

section of code containing the computation, the socket must be opened again using the open_socket keyword

so that communication can be re-established with the instrument.

The close_socket and open_socket keywords are not case sensitive.

Report Tools

Define a Name for a Saved Report Command

Test_Name

Command (Argument) Syntax:

Test_Name (text_entry) Defines the base name for PDF and CSV reports. Populates the ‘Test Name’ field of

the Setup sheet.

Test_name provides a means to define the base name that PDF and CSV report sheets are saved under. When

a VIP Tool report is saved, in either format, the report is given the name defined in the argument for test_name,

with a date and time stamp in the following format:

Test_name_date_time

The argument for test_name must be directly entered; variables, tags or cell assignments are not allowed. The

argument can have double quotation marks, but they are not necessary.

In the above example “My Test” was the argument used for test_name. When the keyword was executed, it

placed the test name in the “Test Name” field of the Setup sheet.

The keyword test_name is not case sensitive.

Select a Report Sheet to Save Command

Report_Sheet

Command (Argument) Syntax:

Report_Sheet (text_entry) Defines which embedded report sheet will be saved when a programmatic save

report command is encountered. Populates the ‘Report Sheet’ field of the Setup sheet.

Report_sheet provides a means to define the default sheet that is saved whenever a save report command is

encountered. When a save_report command does not have an overriding argument, the report sheet named in

this field is saved.

VIP Tool Programming Language Reference

Page 135

The argument for report_sheet must be directly entered; variables, tags or cell assignments are not allowed.

The argument can have double quotation marks, but they are not necessary. The keyword report_sheet is not

case sensitive.

In the above example “Examples” was the argument used for report_sheet. When the keyword was executed, it

placed the report sheet name in the “Report Sheet” field of the Setup sheet.

The keyword report_sheet is not case_sensitive.

Save a Report as PDF Command

Save_Report_PDF/Save_Report_Now_PDF

Command (Argument) Syntax:

Save_report_pdf (optional text_entry) When executed, the command will wait until the script has finished

executing, and will then save the defined report sheet at that time in the PDF format. If no argument is present,

the report sheet named in the setup sheet “Report Sheet” field will be saved. If a report sheet name is included

in the argument column, then the command will save the sheet named in the argument instead.

Save_report_now_pdf (optional text_entry) When executed, the command will immediately save the defined

report sheet in PDF format. If no argument is present, the report sheet named in the setup sheet “Report Sheet”

field will be saved. If a report sheet name is included in the argument column, then the command will save the

sheet named in the argument instead.

Save_report_pdf is used when the programmer intends for an entire script to run before a report is saved. It can

appear anywhere in the script, and the VIP Tool will wait until the script has completed before saving the report.

Save_report_now_pdf is used if the programmer wishes to save a PDF report in its current state or to save

multiple reports from a script.

If the Setup sheet “Open PDF Report on Save”, the report will be opened in the PDF viewer of the operator’s

computer, otherwise, the save function will happen in the background.

The argument for save_report_pdf or save_report_now_pdf must be directly entered; variables, tags or cell

assignments are not allowed. The argument can have double quotation marks, but they are not necessary.

The save_report_pdf and save_report_now_pdf keywords are not case sensitive.

VIP Tool Programming Language Reference

Page 136

Save a Report as CSV Command

Save_Report_CSV/Save_Report_Now_CSV

Command (Argument) Syntax:

Save_report_csv (optional text_entry) When executed, the command will wait until the script has finished

executing, and will then save the defined report sheet at that time in the csv format. If no argument is present,

the report sheet named in the setup sheet “Report Sheet” field will be saved. If a report sheet name is included

in the argument column, then the command will save the sheet named in the argument instead.

Save_report_now_csv (optional text_entry) When executed, the command will immediately save the defined

report sheet in CSV format. If no argument is present, the report sheet named in the setup sheet “Report Sheet”

field will be saved. If a report sheet name is included in the argument column, then the command will save the

sheet named in the argument instead.

Save_report_CSV is used when the programmer intends for an entire script to run before a report is saved. It

can appear anywhere in the script, and the VIP Tool will wait until the script has completed before saving the

report. Save_report_now_CSV is used if the programmer wishes to save a PDF report in its current state or to

save multiple reports from a script.

The argument for save_report_csv or save_report_now_csv must be directly entered; variables, tags or cell

assignments are not allowed. The argument can have double quotation marks, but they are not necessary.

The save_report_csv and save_report_now_csv keywords are not case sensitive.

Remove Previous Values From Tags Command

Clear Tags

Command (Argument) Syntax:

Clear_tags (No argument) Programmatically deletes the values, but not formulas, assigned to tags.

The clear_tags keyword is used to delete only the values assigned to tags; it does not delete the tag itself. This

keyword is generally intended for clearing the results of a previous test from a report sheet that uses tags to

assign values. When the clear_tags keyword is placed at the beginning of a script, all previous tag values are

removed so that no results from a previous test are present on the report when the new script runs. Running

clear_tags essentially ‘clears the slate’.

The clear_tags keyword will not remove a formula from a cell that is assigned a tag, so the result of any formula

will be visible in a cell that still contains the formula. This functionality is implemented so that formulas a script

relies on are not deleted when clear_tags is executed.

The clear_tags keyword is not case sensitive.

VIP Tool Programming Language Reference

Page 137

Debug and Notation Tools

Remark Symbol

Symbol (Remark)

Command (Argument) Syntax:

[precedes a command column remark] (optional additional remark) Creates a remark in the script.

When encountered by the script, the ‘#’ symbol causes the program to recognize the contents of the command

and argument columns to be recognized as remarks, and all text in those columns will be displayed in a green

font. The program will step to a row containing a remark, then step past it – it does not step over it as it would an

inactivated command.

/ Inactivate Command Symbol

/ Symbol (Inactivate Command)

Command (Argument) Syntax:

/ [included in command column cell] (no argument) Inactivates a command in the script.

When the ‘/’ symbol is detected in a command column cell, the command in the cell is inactivated. The contents

of the command and argument columns will appear in a gray font when the symbol is detected in the command

column. The program will not step through the row but will step over or ‘skip’ the row. The ‘/’ symbol can be

entered manually into the command column cell. Pressing the ‘Toggle Selection Active/Inactive’ button will place

or remove the symbol in any selected cell.

VIP Tool Programming Language Reference

Page 138

Breakpoint Function

Break

Command (Argument) Syntax:

break (no argument) Pauses execution of script when invoked (debugging tool).

Break is used to insert a breakpoint while a script is running. When a script encounters the break command,

program operation pauses (but execution does not end) on that row. When the script is paused at a breakpoint,

the Reply column will display the message “Holding at Breakpoint”. Pressing the ‘Run From Here’ or ‘Single

Step’ buttons on the VIP Tool ribbon will allow the script to resume, either in full automatic mode, or single step

mode, respectively.

When the script is not running, selecting a row and pressing the ‘Insert Breakpoint Here’ button will insert a row

and place the break command in the new row. Pressing the ‘Remove All Breakpoints’ button will remove all

instances of break on the Script sheet and will remove the row(s) formerly occupied by the break command(s).

Break can also be typed into any command column row, which will fulfill the same purpose.

The break command is not case sensitive.

The break command is always displayed in a red font for easy identification.

In the above example, break has been inserted into a subroutine on row 25. The program is paused at that

point.

NOTE: Note that rows 23 and 24 contain the print keyword. The print keyword will display in the Reply
column the contents of a variable, tag or cell assignment that is placed in its Argument. It is
useful to use the print keyword in conjunction with the break keyword in to determine what
value may be held by a variable, tag, or cell assignment at the point the break has been
inserted.

VIP Tool Programming Language Reference

Page 139

Debug Print Function

Print

Command (Argument) Syntax:

Print (variable, tag or cell assignment) Prints contents of variable, tag or cell assignment to the Info Message

column.

Print is a debugging tool that is used to display to the user the current contents of a variable, tag or cell

assignment.

Print is placed in the Command column and the variable, tag or cell assignment is placed in the Argument.

When executed, the contents of the variable, tag, or cell assignment is displayed in the Info Message column.

The keyword print is not case sensitive.

Utility Commands

Copy Function

Copy

Command (Argument) Syntax:

Copy (text, variable, tag, or cell assignment To cell assignment) Copies text entry or the contents of a variable,

tag or cell assignment to a cell assignment.

Copy is a utility keyword that is used to copy data from any sheet in the VIP Tool workbook to a cell on any

report sheet embedded in the VIP Tool workbook. The data to be copied can be directly entered in the

argument, or it can be used to transfer the value of a cell assignment, or data stored in a variable or tag. Copy

will not copy a formula stored in a cell assignment, only the value held by a cell assignment. However, a formula

can be written out and enclosed in quotations and copied to a cell on an embedded worksheet.

The keyword copy is not case sensitive.

In the above example, the copy command on row 1 copies the value of cell A1 on an embedded sheet called

“Calc” to cell L1 on an embedded worksheet called “Examples. Row 2 copies the value of the “Calc” worksheet

VIP Tool Programming Language Reference

Page 140

cell A2 to the “Examples” sheet cell L2. Row 3 directly copies the value of ‘151.255’ to the “Examples” sheet cell

L3 and row 4 directly copies the value “My Text” to cell L4 of the “Examples” sheet.

The above illustration demonstrates copying values held by tags to a report sheet. Row 2 assigns the text value

“Text or Number” to the variable ‘[myvar]’. Row 3 copies the value of ‘[myvar]’ to cell B2 on the “Examples”

sheet. Row 4 copies the value of the tag ‘<mytag>’, which can exist on any worksheet, to cell B1 of the

Examples worksheet.

As with any variable, tag, or cell assignment, array indexes can be used to address values. In the example

above example, row 3 of the worksheet addresses column A of the “Calc” sheet with the index held by the

nextcount counter. As the destination, column A of the “Examples” worksheet is addressed. The For Next loop

counts from 1 to 3, so the value of nextcount steps from 1 to 3. Therefore, cells A1, A2 and A3 of the “Calc”

worksheet are sequentially addressed in the For Next loop, and their values are sequentially copied to cells A1,

A2 and A3 of the “Examples” worksheet.

Copy will only directly copy the value of a cell assignment to another cell. However, a formula can be copied to

another cell by writing out the formula in the standard Excel format. In the above example, “=D1 / 2 “ is copied to

cell B1 of the “Calc” worksheet. This process copied the formula into cell B1 of the “Calc” worksheet. Cell B1 of

the “Calc” worksheet displays the value of ‘1.5’, which is the result of the formula “=D1/2”, because the value

displayed is 3 divided by 2 (‘3’ being the value held in cell D1).

VIP Tool Programming Language Reference

Page 141

Create Tag Function

Show_Tags/Create_Tag/Hide_Tags

Command (Argument) Syntax:

Show_tags (No argument) Programmatically places the VIP Tool in the Show Tags mode. Tags become visible

when the show_tags function is executed. The effect of this function is identical to pressing the Show Tags

button.

Create_Tag (text or variable to cell assignment) Programmatically creates tags. The argument consists of text

or a variable that holds text, followed by the keyword to, and puts the tag in the cell defined by the cell

assignment.

Hide_tags (No argument) Programmatically places the VIP Tool in the Hide Tags mode. Tags become invisible

and the current value of the tag, if any, becomes visible when the hide_tags function is executed. Identical

function to pressing the Hide Tags button when a script is not running.

Show_tags and hide_tags are commands that will place the VIP Tool in the Show Tags or Hide Tags modes,

respectively. These commands are of little use when running a script used to control the instrument in a test

routine, but instead are provided as utility commands for use in conjunction with using the create_tag keyword.

The create_tag keyword is a utility that is used to create a tag and assign it to a cell. The purpose of create_tag

is to automatically create tag arrays programmatically rather than manually entering each tag when creating a

report sheet. Create_tag allows the programmer to define a base tag name and assign it an index number using

a counter within a loop. The cell assignment in the argument can be defined as a range of cells, using either a

‘count’ or ‘range’ variation of the selected counter’s syntax.

The show_tags, create_tag, and hide_tags keywords are not case sensitive.

The illustration above demonstrates creating a tag using text entry. Row 2 contains the keyword command

show_tags so that the created tag can be recorded; show_tags is required for any create_tag application

because the VIP Tool will always hide tags if any row is executed by pressing the Run Script, Run Selection,

Run From Here, or Single Step From Here buttons.

Row 3 contains the create_tag keyword. The argument creates a tag using the text “Mytag” and assigns it to cell

A1 of an embedded sheet called “Examples” in the VIP Tool workbook.

VIP Tool Programming Language Reference

Page 142

Row 4 contains the hide_tags keyword, which hides the tags and registers the tag locations in the VIP Tool

workbook. After this script is executed, pressing the Show Tags button will reveal the newly created tag

‘<Mytag>’ in cell A1 of the “Examples” sheet.

The example above accomplishes the same task as the previous example by using the contents of a variable to

name the created tag. On row 2, the variable ‘[tagname]’ is assigned the text value “Mytag”. On row 4,

create_tag uses the contents of the variable ‘[tagname]’ as the name to assign to the newly created tag.

In the above example, create_tag is placed inside a For Next loop. The embedded For Next loop, nextcount, is

used as an index to create an array of tags. On row 3, the variable ‘[tagname]’ is assigned the text value “Freq”.

This variable is used to create the base name of the tag array. The For Next loop argument on row 4 sets the

loop to step from 1 to 3, so this loop will iterate 3 times, creating a tag on each iteration.

On row 5, the create_tag argument assigns the current value of nextcount to the base name with the syntax

‘[tagname]_nextcount’. So, on the first iteration of the For Next loop, the tag name ‘Freq_1” is created. On the

second iteration of the For Next loop, the tag name ‘Freq_2’ is created, and so on.

The cell assignment in the argument works the same way; on the first iteration of the For Next loop, the tag

name is assigned to cell A1 of a sheet named ‘Examples’, on the second iteration of the For Next loop, the tag

name is assigned to cell A2 of the same sheet, and so on.

After running the script, pressing the Show Tags button reveals that the script has created three tags in column

A of the “Examples” sheet.

VIP Tool Programming Language Reference

Page 143

The above illustration depicts a method for introducing multiple elements to a tag array name, and for assigning

different tag names to different columns of a report sheet using a For Next loop.

The For Next loop argument on row 4 sets the loop to step from 1 to 10, so this loop will iterate 10 times,

creating two unique tags on each iteration.

On row 3, the variable ‘[tagname] is assigned the value of “RX_Freq”.

On row 5, the variable ‘[group]’ is assigned the text value of “A”.

On row 6, the argument for create_tag is:

[tagname]_[group]_nextcount to (examples_A:nextcount)

This creates the base tag name “RX_Freq_A_” and appends the value of nextcount on the end of the tag name.

The argument assigns the tag destination to the A column of a sheet named “Examples”, with the row number

defined by the value of nextcount. The first iteration of the loop will create the tag ‘<RX_Freq_A_1>’ and is sent

to cell A1 of the “Examples” sheet. The second iteration of the loop will create the tag ‘<RX_Freq_A_2>’ and is

sent to cell A2 of the “Examples” sheet and so on.

On row 7, the ‘[group]’ variable is given the text value “B”.

On row 8, the argument for create_tag is:

[tagname]_[group]_nextcount to (examples_B:nextcount)

This creates the base tag name “RX_Freq_B_” and appends the value of nextcount on the end of the tag name.

The argument assigns the tag destination to the B column of a sheet named “Examples”, with the row number

defined by the value of nextcount. The first iteration of the loop will create the tag ‘<RX_Freq_B_1>’ and is sent

to cell B1 of the “Examples” sheet. The second iteration of the loop will create the tag ‘<RX_Freq_B_2>’ and is

sent to cell B2 of the “Examples” sheet and so on.

After running the script, pressing the Show Tags button reveals that the script has created twenty tags, 10 tags

in column A of the “Examples” sheet, and 10 tags in column B of the “Examples” sheet

VIP Tool Programming Language Reference

Page 144

This page intentionally left blank.

.

Appendix A: VIP Tool and Instrument RCI Resources

Page 145

Appendix A: VIP Tool and Instrument RCI Resources

VIP Tool Resources

The VIP Tool web page provides several resources for users of the tool. At this link you will find application

notes, videos and more.

VIP Tool Resources

3900 Series RCI Manuals

A number of different RCI manuals are available for the 3900 series of test instruments. The manuals consist of

the RCI commands for the platform/ Analog Duplex System, P25 System, DMR System, NXDN system and

more. The 3900 series RCI documentation, in PDF format, is available for download at the following links:

3900 Series Digital Radio Test Set Remote Programming Manual

Remote Programming Manual: 3900 Series Digital Radio Test Set P25

Remote Programming Manual: 3900 Series Digital Radio Test Set DMR

Remote Programming Manual: 3900 Series Digital Radio Test Set dPMR

Remote Programming Manual: 3900 Series Digital Radio Test Set NXDN

Remote Programming Manual: 3900 Series Digital Radio Test Set TETRA

Remote Programming Manual: 3900 Series Digital Radio Test Set HPD®

Remote Programming Manual: 3900 Series Digital Radio Test Set ARIB STD-T98

8800 Series RCI Manual

The 8800 Series RCI Manual can be downloaded at the following link:

8800 Digital Radio Test Set RCI Programming Manual

3550 Series RCI Manual

The 3550 Series RCI Manual can be downloaded at the following link:

3550/3550R RCI Manual

http://www.viavisolutions.com/VIPTool
https://www.viavisolutions.com/en-us/literature/3900-series-digital-radio-test-set-remote-programming-manual-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-p25-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-dmr-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-dpmr-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-nxdn-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-tetra-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-hpdr-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/remote-programming-manual-3900-series-digital-radio-test-set-arib-std-t98-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/8800-digital-radio-test-set-rci-programming-manual-manuals-user-guides-en.pdf
https://www.viavisolutions.com/en-us/literature/3550-3550r-rci-manual-manuals-user-guides-en.pdf

Appendix A: VIP Tool and Instrument RCI Resources

Page 146

This page intentionally left blank.

Document Number:Release Date: 14
Feb 2021

Revision: 1.0

VIAVI Solutions

 North America (Toll Free) 1-844-GO-VIAVI / 1-844-468-4284

 Latin America +52 55 5543 6644

 EMEA +49 7121 862273

 APAC +1 512 201 6534

	Introduction to the VIP Tool
	Overview
	Intended User
	System Requirements

	Installing VIP Tool
	A Sample VIP Tool Directory Structure
	Enabling the VIP Tool

	Establishing an Ethernet Connection to the Instrument
	Connection Types
	Direct Connection
	Network Connection

	Configuring the Instrument’s Network Connection
	Configuring the 8800 Series Connection
	Configuring the 3550 Series Connection
	Configuring the 3900 Series Connection
	Setting up the Computer for Static IP Connection
	Testing the Connection

	The VIP Tool Workbook
	The VIP Tool Ribbon
	The Getting Started Sheet
	The Getting Started Sheet Ribbon
	Results Data Sheet Ribbon I/O Group

	The Setup Sheet
	Setup Sheet Fields
	The ‘Select Model’ Field
	The ‘IP Address’ Field
	The ‘Port Number’ Field
	The Test Name Field
	The Report Sheet Field
	The Open PDF Report on Save Field
	File Path Fields
	Report PDF File Path
	Report CSV File Path
	Script File Path
	Script Module File Path
	Import / Export Field Sheet Path

	The Setup Sheet Ribbon
	Setup Sheet Ribbon I/O Group
	Setup Sheet Path Operations Group

	The Script Sheet
	The Script
	Script vs. Module
	Organization of the Script Sheet
	Commands and Arguments
	The Command Column
	The Argument Column
	The Reply Column
	The Info Message Column
	VIP Tool Script Color Coding

	The Script Sheet Ribbon
	Script Sheet Ribbon I/O Group

	Script Sheet Ribbon Script Operations Group
	Script Sheet Ribbon Script Debug Group
	Script Sheet Ribbon Row Edit Group
	Script Sheet Script Load / Save Group

	The Trace Data Sheet
	The Trace Data Sheet Ribbon
	Trace Data Sheet Ribbon I/O Group
	Trace Data Sheet Ribbon Script Operations Group
	Trace Data Sheet File Operations Group

	The Results Data Sheet
	The Results Data Sheet Ribbon
	Results Data Sheet Ribbon I/O Group
	Results Data Sheet Ribbon Script Operations Group
	Results Data Sheet File Operations Group

	Report Sheets
	Report Sheet Rules
	Tags
	Saving Report Sheets
	The Report Sheet Ribbon
	Report Sheet Ribbon I/O Group
	Report Sheet Ribbon Script Operations Group
	Report Sheet Ribbon Save Report Group
	Setting Up A Save Selection Area
	Report Sheet Ribbon Report Tools Group

	The Version Sheet
	The Version Sheet Ribbon
	Results Data Sheet Ribbon I/O Group

	VIP Tool Programming Language Reference
	Variables, Tags, and Cell Assignments
	Variables
	Variable Syntax
	Declaring Variables and Assigning Values
	Command Column Variables
	Command Column Placeholder Variables
	Argument Column Variables
	Query Arguments and Variables
	Creating Variable Arrays
	Variable as Argument for RCI Command

	Tags
	Working with Tags
	Creating a Tag on a Report Sheet
	Assigning Values to Tags and Arranging Tags

	Rules of Tag Use
	Considerations for Assigning Values to Tags
	Tag Syntax
	Command Column Tags
	Argument Column Tags
	Query Arguments and Tags

	Creating Tag Arrays
	Tag as Argument for RCI Command
	Cell Assignments
	Simple Cell Assignment Syntax
	Assigning Values Using Cell Assignment
	Query Arguments and Cell Assignments
	Cell Assignment Arrays and Ranges
	Cell Assignment Ranges

	Math Functions
	Simple Math Functions Supported by the VIP Tool Scripting Language
	Math Function Command Column Syntax
	Math Function Argument Column Syntax
	Order of Math Operations for Variables, Tags and Cell Assignments

	Using Math Functions to Generate Arguments

	Concatenation
	Counters and Timers
	Counter Functions
	Counters

	Timer Functions
	Timers

	Goto and Subroutine Functions
	Goto Function
	Goto/Return

	Subroutine Function
	Sub/Endsub/Runsub
	Sub block example

	Loops and Conditional Statements
	For Next Loop
	For/Next/Nextcount
	Nextcount

	Do Loop
	Do/Exitdo/Loop/Docount
	Docount
	Multiple Loop Exit Conditions

	IF Statement
	IF/ElseIF/Else/Endif

	Flow Control, Messages and Forms
	Delay Function
	Delay

	Schedule Function
	Schedule

	End Function
	End

	Custom Dynamic Message Box
	Display_Message /Message1/Message2/Close_Message

	Wait for Transmit On Dynamic Message Box
	Wait_For_Transmit_On

	Wait for Transmit Off Dynamic Message Box
	Wait_For_Transmit_Off

	Wait for Audio Level Dynamic Message Box
	Setaudio_{Units}_{Lower Limit}_{Upper Limit}

	Pause Message Box
	Pause

	Yes/No Selection Message Box
	Query_Yes_No / Answer_Yes_No

	Applying the Result of Query_Yes_No to a Conditional Statement
	Choice Message with One Button and Cancel
	Display_One_Button /Button1/Button1_Val

	Choice Message with Two Buttons and Cancel
	Display_Two_Button /Button1/Button2/Button1_Val/Button2_Val

	Two Choice Check Box Message with Cancel
	Display_Choice_Message /Choice1/Choice2/Choice1_Val/Choice2_Val

	Test Info Entry Form
	Display_Test_Info /Uut_SN/Operator_Info

	Numerical Entry Form
	Display_Numform /Numform_Val

	Text Entry Form
	Display_Textform /Textform_Val

	Message Positioning
	Message_Horizontal /Message_Vertical/Center_Messages

	Special Functions
	Automated Find SINAD Function
	Find_{TargSINADdB}_SINAD_{Lower Limit}_{Upper Limit}

	Watts to dBm Calculator
	Watt_To_dBm_{Watts}

	dBm to Watts Calculator
	dBm_To_Watts_{dBm}

	Audio Gain/Loss In dB Calculator
	Db_Calc_{V1}_{V2}

	Select A Cell for Viewing Function
	Select_Cell

	Transfer Trace Data to Another Sheet
	Transfer_Trace

	Clear Range of Cells in a Row
	Clear_Row

	Beep Function
	Beep

	Time Function
	Time

	Date Function
	Date

	Close and Open Socket Functions
	Close_Socket/Open_Socket

	Report Tools
	Define a Name for a Saved Report Command
	Test_Name

	Select a Report Sheet to Save Command
	Report_Sheet

	Save a Report as PDF Command
	Save_Report_PDF/Save_Report_Now_PDF

	Save a Report as CSV Command
	Save_Report_CSV/Save_Report_Now_CSV

	Remove Previous Values From Tags Command
	Clear Tags

	Debug and Notation Tools
	# Remark Symbol
	# Symbol (Remark)

	/ Inactivate Command Symbol
	/ Symbol (Inactivate Command)

	Breakpoint Function
	Break

	Debug Print Function
	Print

	Utility Commands
	Copy Function
	Copy

	Create Tag Function
	Show_Tags/Create_Tag/Hide_Tags

	Appendix A: VIP Tool and Instrument RCI Resources
	VIP Tool Resources
	3900 Series RCI Manuals
	8800 Series RCI Manual
	3550 Series RCI Manual

