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Abstract

Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical

raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we

demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID

and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector

machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingre-

dients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale

classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different

APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent

modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant

analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme,

exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable

and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for

large-volume applications highly achievable.
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Introduction

Raw material identification (RMID) or verification of the

packaging label is a common quality-control practice in

the pharmaceutical industry. The increasing global footprint

of the supply chain and public health concerns resulting

from contaminated or mislabeled materials have driven

many regulatory bodies to require inspection of every

barrel in every shipment of materials used in pharmaceut-

ical drugs. Traditionally, pharmaceutical RMID has relied on

laboratory-based analytical techniques such as chromatog-

raphy, wet chemistry, and titrations among others. Most of

these techniques are destructive in nature, time consuming

and labor intensive, and hence it is challenging to handle an

enormous number of analyses.1

Vibrational spectroscopy, including near-infrared (NIR),

mid-infrared (mid-IR), and Raman spectroscopy, has gained

wide acceptance in the pharmaceutical industry for RMID in

recent years due to its non-destructive nature, minimal

sample preparation, and fast data acquisition. Especially,

with substantial progress in portable NIR, mid-IR, and

Raman spectrometers, on-site and in situ analysis of a

large number of samples has become practical for material
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identification, which opens up more application

opportunities.2

Among the three vibrational spectroscopic techniques,

NIR and IR measure absorbance, while Raman measures

scattering. NIR and IR are sensitive to the change in the

dipole moment of a vibrating molecule, while Raman is sen-

sitive to the change in the polarizability of a vibrating mol-

ecule. Mid-infrared is less popular in RMID than NIR due to

the strong absorption coefficient in the mid-IR spectral

range, which limits the path length into the samples and

sometimes requires dilution of the samples using infrared

transparent materials.3 In general, NIR and Raman are com-

plementary in nature. Both techniques have found broad

applications in pharmaceutical analysis,4,5 but have their

own advantages and disadvantages.6 Raman spectroscopy

has outstanding molecular selectivity, can be easily used in

a non-contact fashion through common container mater-

ials, and is free of water interference from aqueous solu-

tions. However, interference from fluorescent molecules

can be a limitation, and the high energetic laser power

may decompose sensitive samples. Conversely, NIR spec-

troscopy does not suffer from the fluorescence problem

and can also measure through plastic or glass containers.

The limiting factor of NIR is the complexity of the spectra,

thus low molecular selectivity, resulting from vibrational

overtones and combination bands, which require the use

of multivariate data analysis. Over the past decade, the

computing power and algorithms have improved dramatic-

ally allowing NIR to become more powerful and user

friendly. In this work, we chose NIR as the analytical tool

for pharmaceutical RMID.

Near-infrared techniques have generally been adopted

by major pharmacopoeias. The United States

Pharmacopoeia (Chapter 1119)7 and the European

Pharmacopoeia (Chapter 2.2.40)8 have addressed the suit-

ability of NIR instrumentation for application in pharma-

ceutical testing. Luypaert et al. reviewed a wide range of

NIR applications for pharmaceutical material identification,4

such as identifying commonly used excipients and active

pharmaceutical ingredients (API),9,10 distinguishing between

closely related substances,11,12 and classifying different poly-

morphic forms of the same product.13,14 More recently,

Grout incorporated NIR material qualification outputs

with statistical process control (SPC) charts (through his-

torical trending) to link material attributes to both product

quality and process behavior, which enables rapid material

qualification on receipt with better understanding of pro-

cess performance.15 Moreover, in the last couple of years,

miniaturized NIR spectrometers became commercially

available. Their performance for pharmaceutical applica-

tions has been successfully demonstrated,2,16 which facili-

tates more practical and flexible use of NIR spectrometers

for on-site material identification.

Near-infrared-based pharmaceutical RMID requires the

aid of chemometric tools for classification due to the

complex nature of NIR spectra, which is essentially a pat-

tern recognition problem. The pattern recognition tech-

niques can be divided into two categories, the supervised

and the unsupervised methods, with the former being the

most common for pharmaceutical applications.17 In a clas-

sification study, unsupervised principal component analysis

(PCA) is often used first to show discriminating tendencies

and then more effective supervised analyses are applied for

enhanced discrimination.18 Correlation based methods, dis-

tance based methods, linear discriminant analysis (LDA),

soft independent modeling of class analogy (SIMCA), and

partial least squares discriminant analysis (PLS-DA) are clas-

sical methods for the supervised classification.17 For exam-

ple, Blanco and Romero constructed a library including NIR

spectra for 125 different raw materials using the correlation

coefficient as the discriminating criterion.9 Dreassi et al.

utilized LDA to distinguish pharmaceutical compounds

with different physical properties.19 Krämer and Ebel

demonstrated the discrimination of powdered and micro-

crystalline celluloses as well as cellulose and cellulose

ethers by SIMCA.12 Andre assessed chemical quality of

7-aminocephalosporanic acid from a large number of pro-

duction lots using PLS-DA.20 Some additional methods

were also discussed in the review article by Roggo et al.17

Despite past successful applications of NIR for pharma-

ceutical RMID, there are still challenges that need to be

addressed. One of the challenges is model transferability,

i.e., transferring the chemometric model from one or more

master instruments to multiple target instruments. Multiple

instruments are often needed to fulfill the tasks of RMID on

a regular basis. Built-in differences and changes induced by

wear and varying environments in the instrument response

function can render a model established on one instrument

invalid on another. However, it is often not practical and/or

economical to develop models for individual instruments.

Thus, transferable robust models that require the least

number of master instruments are highly desirable for

RMID. Another challenge of NIR-based RMID is dealing

with a large library of NIR spectra when the total number

of classes reaches hundreds, which is not uncommon for

RMID, since there are a wide range of APIs and excipients

with different physical properties from different manufac-

turers and different lots involved. In this case, some con-

ventional pattern classifiers suffer from the resolution issue

that the chemometric models’ discrimination power is

diluted by the increased number of classes and thus not

able to distinguish smaller differences among them.

In recent years, the support vector machine (SVM), ori-

ginally popular in the neural networks and machine learning

community, has been introduced to chemometrics and

proven to be powerful in NIR spectra classification.21,22

However, this classifier has been less studied in NIR-

based pharmaceutical RMID. In this work, we successfully

addressed the challenges of model transferability and large-

scale classification in NIR-based RMID by the use of SVM.
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Moreover, miniature MicroNIR spectrometers were used

for all of the measurements. The MicroNIR spectrometer is

designed to use a novel thin-film linear variable filter (LVF)

as the dispersive element on top of an InGaAs array detec-

tor. The filter coating is physically tapered with position,

resulting in a continuous change in the center wavelength

of the filter with position. This ultra-compact spectrometer

offers high-speed measurement, ruggedness, stability,

portability, and low power consumption, and has been suc-

cessfully used in several applications.16,23–26 The use of

MicroNIR spectrometers with excellent performance con-

sistency and the powerful SVM algorithm makes rapid and

reliable on-site RMID highly achievable.

Experimental Details

Materials

Two sets of materials were used in this work. The first set

consisted of 19 of the most commonly used APIs and

excipients, including acetaminophen, ascorbic acid, aspirin,

benzocaine, caffeine, cellulose, corn starch, fructose, hydro-

xypropyl cellulose (HPC), (hydroxypropyl)methyl cellulose

(HPMC), ibuprofen, lactose, magnesium stearate (Mg-stea-

rate), poly(ethylene oxide) (PEO), polyvinylpyrrolidone

(PVP), polysorbate 80, sodium starch glycolate (SSG), talc,

and titanium dioxide (TiO2). For each compound, we

purchased two to three different products, which

were different in grades and/or physical properties, or

were from different manufacturers. We divided the samples

into lots A, B, and C. This set of samples was used to study

model transferability. The second set consisted of 253 com-

monly used APIs and excipients that were provided by one

of our collaborators in the pharmaceutical industry (the full

list of materials is available upon request). For each com-

pound, multiple samples were collected to include natural

variability. This set of samples was used to investigate large-

scale classification.

Spectra Collection

Miniature MicroNIR Pro 1700 spectrometers developed and

commercialized by Viavi Solutions Inc. (formerly JDSU, Santa

Rosa, CA) were used for all data acquisition. All spectra were

collected using MicroNIR Pro spectrometer software ver-

sion 2.1 (Viavi Solutions Inc.) in the range of 908–1676 nm.

A reference measurement was performed on the MicroNIR

approximately 15 min after the lamps were turned on and

every hour thereafter while performing scans. A 99% diffuse

reflectance panel was used for the 100% reference value and

the 0% reference value was taken by leaving the tungsten lamps

on with an empty vial holder. This scenario was used to

account for any scattered light from the sample vial holder.

The spectra of the pharmaceutical materials were

collected in ambient conditions. As shown in Figure 1,

all samples were presented to the spectrometer housed

in 14 mm diameter borosilicate glass vials with measure-

ments performed through the bottom of the vials. A vial

holder that slips over the end of the spectrometer was

used by the operator to easily introduce and remove sam-

ples while maintaining an optimal 3 mm distance between

the material and the sapphire window of the spectrometer.

The vial was rotated approximately 10–15� after every

scan. Each scan had an integration time of 10 ms with spec-

trum averaged over 50 collections.

For the set of 19 compounds, three vials were prepared

for every sample in lots A, B, and C, respectively. Data

acquisition was performed at three different dates and dif-

ferent times of the day using different vials of the same

sample to take into account varying ambient temperature.

A minimum of five spectra were collected for each vial. To

study the model transferability, six spectrometers were

used to collect data from the set of 19 pharmaceutical

compounds. For the set of 253 compounds, a minimum

of 20 spectra were collected from multiple samples for

each compound. Figure 1 also illustrates the portability of

the device for on-site and in situ pharmaceutical RMID

with spectra acquisition by the ultra-compact MicroNIR

spectrometer tethered to a rugged seven-inch Windows

8.1 tablet.

Spectral Pretreatment and Chemometric Analysis

All of the steps of spectral processing and chemometric ana-

lysis were performed using Matlab (The MathWorks, Inc.).

All of the spectra collected were pretreated using

Figure 1. MicroNIR spectrometer equipped with a vial

holder and tethered to a rugged 7’’ Windows 8.1 tablet for

pharmaceutical raw material identification.
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Savitzky–Golay first derivative followed by standard normal

variate (SNV). Soft independent modeling of class analogy

(SIMCA), PLS-DA, LDA, quadratic discriminant analysis

(QDA), and SVM were applied to all of the preprocessed

data. Their performance was compared for model transfer-

ability and large-scale classification. It should be noted that

Matlab was chosen in this study to automatize the proced-

ure of handling multiple chemometric models. In fact, the

steps involved in spectral pretreatment, model building and

model validation for the majority of the algorithms tested in

this study can be performed using The Unscrambler (Camo

Software Inc.), which is the default data processing software

for MicroNIR products.

Results and Discussion

To enable reliable NIR-based pharmaceutical RMID, it is piv-

otal to select appropriate chemometric models. Although

not as well-known in pharmaceutical RMID, SVM finds

increasing interest in chemometrics recently as a powerful

classifier. The focus of our work was to test the performance

of SVM in pharmaceutical RMID. The key concept of SVM is

the use of maximized margin hyperplanes to define decision

boundaries separating data points into different classes,

which gives SVM very good generalization capabilities. In

this work, SVM models were tested using two different

kernel functions, linear (SVM-linear) and radial basis function

(RBF) (SVM-rbf). A third SVM model using linear kernel and

a hierarchical scheme (hier-SVM-linear) was also tested.

In light of recent development of hierarchical SVM classi-

fiers,27,28 an ubiquitous hierarchical scheme was developed

and used in this work, which involves multilevel classification

with upper-level classification refining lower-level classifica-

tion that includes classes with chemical similarity to achieve

more accurate prediction. For comparison, four classical

models were selected for testing, including SIMCA, PLS-

DA, LDA, and QDA. Soft independent modeling of class

analogy (SIMCA) considers each class separately by per-

forming PCA for each class and puts more emphasis on simi-

larity within a class than on discrimination between classes.

On the other hand, PLS-DA emphasizes the discrimination

between classes by rotating the principal components (PCs)

such that a maximum separation among classes is obtained.

Linear discriminant analysis (LDA) and QDA focus on finding

linear or quadratic discriminant functions to maximize

separation among the different classes. From a practical per-

spective, we considered several factors to compare these

models in this work, including prediction success rate, model

transferability, model building time, and the scope of the

spectral library.

Model Transferability

All of the models were first tested using the library of 19

pharmaceutical compounds. For such a library with a

relatively small number of materials, successful classification

of all the compounds is expected based on literature data

and our past experience. However, instrument-to-instru-

ment transfer of methods is what needed to be proven.

Method transferability is very important for point-of-use

NIR applications, especially when applied in large scale

and when a method is developed in one location and is

then required to be deployed at several different locations.

Therefore, this effort was to compare model transferability

of the seven different models when using MicroNIR spec-

trometers. To do this, we collected six libraries of spectral

data using six different MicroNIR spectrometers, covering

variations from chemicals, environmental factors, operators

and instruments. We determined how many spectrometers

would be needed for building a robust model that will be

successful when applied to spectrometers that were not

part of the training set.

For each chemometric model, the procedure started

with building a training model using the consolidated library

of training data collected by different numbers of spectrom-

eters (nTUx, x¼ 1–6). The model was then used to make

predictions for the test set collected by the remaining spec-

trometers. For each case (x¼ 1–6), this procedure was

repeated until consolidated libraries collected by all pos-

sible combinations of spectrometers were used for training.

For each repetition, the prediction success rate defined as

the number of correct predictions divided by the total

number of predictions was obtained and the average

value was reported. In the case of nTU6 when all of the

six spectrometers were used for training, the training set

consisted of spectra chosen by the Kennard–Stone sample

selection scheme,29 and the remaining spectra served as the

test set.

The average value of prediction success rate of each case

for each model is reported in Table 1, and the number of

spectrometers needed to achieve 100% classification predic-

tion was determined for each model. It is clearly seen that

the prediction success rate was increasing with the number

of spectrometers for training until it reached 100%. The

SVM-linear and hier-SVM-linear models only needed one

Table 1. Prediction accuracy as a function of number of

spectrometers to build training models.

Classifier nTU1 nTU2 nTU3 nTU4 nTU5 nTU6

# Units

for 100%

SIMCA 97.40 98.85 99.50 99.81 99.96 100 6

PLS-DA 99.66 99.68 99.90 99.96 99.99 100 6

LDA 86.41 97.84 98.83 99.98 100 100 5

QDA 86.47 97.88 98.85 99.98 100 100 5

SVM-rbf 99.66 100 100 100 100 100 2

SVM-linear 100 100 100 100 100 100 1

Hier-SVM-

linear

100 100 100 100 100 100 1
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spectrometer for training to achieve perfect prediction, and

the SVM-rbf model needed two. In contrast, five or six spec-

trometers were needed to achieve perfect prediction for

the other models. These results indicate that SVM algo-

rithms outperformed all the other algorithms in terms of

model transferability.

As an example, the training set acquired by one spec-

trometer was used to predict the test set acquired by

another spectrometer implementing the SVM model.

The clear partitions of classes and successful predictions

are visualized by the PCA-SVM plot in Figure 2, where

the data collected were plotted against PC1 and PC2 and

the class boundaries were generated by SVM calculations.

The filled triangles in each color-coded class represent the

support vectors that constrain the width of margin

between different classes and the open triangles represent

the rest of the training data. The color-coded stars repre-

sent the predicted data with the color denoting the true

identity of the test sample. The prediction success rate was

100% for the data shown in Figure 2. The few TiO2 data not

perfectly enclosed by the boundary need a higher dimen-

sional space to visualize the classification, since the data

structure of the spectra has 121 dimensions and the

PCA-SVM plot only shows two.

It should be noted that for the library of 19 pharmaceut-

ical compounds, with PLS-DA and SIMCA, prediction accur-

acy of >98.8% was achieved with only two instruments for

training. This excellent instrument-to-instrument method

transferability can be attributed to the consistent perform-

ance of MicroNIR spectrometers spectrally, optically and

physically, which was enabled by the wavelength calibration

reproducibility and photometric stability of the MicroNIR

spectrometers.23

To further demonstrate the robustness of the SVM

model and its superb transferability, we conducted more

stringent model validation. The materials in the library of 19

pharmaceutical compounds were from three different lots

(lots A, B, and C) with three products different in grades

and/or physical properties, or from different manufacturers

for each compound. Thus, we were able to use data from

one lot (lot A) as the training set and data from the other

two lots (lots B and C) as the external testing set. Three

validation tests were designed to systematically test the

impact of material and instrument variation and robustness

of the calibration model. For the baseline case, the same-

unit–same-lot test (SUSL), the combined datasets from all

three lots were used with half of the data for training and

the other half for testing. The six spectrometers were

tested respectively. For the second case, the same-

unit–cross-lot test (SUXL), the lot A data were used as

the training set, and the lot B and lot C data were used

as the testing set. The six spectrometers were tested

respectively. For the third case, the cross-unit–cross-lot

test (XUXL), the lot A data from one unit were used as

the training set, and the lot B and lot C data from a different

unit were used as the testing set. Pairwise cross-unit valid-

ation was performed between the six spectrometers with

30 assessments in total. The XUXL case simulated the real

world situation, where the calibration model needs to be

transferred to different instruments, applied to materials

from different sources and/or lots, and used at different

test locations. Six models were compared for each case.

The hier-SVM-linear model was left out of the test here,

because theoretically the results from hier-SVM-linear

model are expected to be the same as from the SVM-

linear model when the number of classes is relatively small.

The validation results are presented in Figure 3 and

Table 2. In Figure 3, individual prediction success rates

are shown for each case: (a) SUSL; (b) SUXL; and

(c) XUXL. In Table 2, average prediction success rates

Figure 2. PCA-SVM plot for 19 pharmaceutical compounds based on the SVM model.
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and the corresponding standard deviation across different

spectrometers or different combinations of spectrometers

are reported. As shown in Figure 3a and Table 2, for the

baseline case (SUSL), all of the models performed well with

most of the prediction success rates close to 100%. The

lowest prediction success rate was 92.44% for the sixth

spectrometer for both LDA and QDA models. For the

SUXL case, the prediction success rate was still above

90% for all of the models using all of the spectrometers.

However, it can be clearly seen from Figure 3b and Table 2

that the two SVM models outperformed the others with

most of the prediction success rates greater than 97%

except for the second spectrometer, where the success

rate was 94.23% using the SVM-rbf model. Among the

other models, SIMCA provided the lowest prediction suc-

cess rate. For the XUXL case, as shown in Figure 3c and

Table 2, the prediction success rate significantly reduced

when using LDA, QDA, and SIMCA. For the LDA and

QDA models, the lowest success rate was below 62%.

For the SIMCA model, the lowest success rate was

below 60%. The SVM models outperformed the others in

terms of not only the average success rate, but also con-

sistency in the high success rate (>94%) for all the

data points in Figure 3c. Between the two SVM models,

SVM-linear performed better with 100% prediction success

rate for 29 out of the 30 pairs, except when using the

second spectrometer for training and the first spectrom-

eter for testing, where the success rate was 96.43%, which

was still higher than the success rates obtained by all the

other models using the same two spectrometers. PLS-DA

performed better than SIMCA, LDA, and QDA with pre-

diction success rate ranging from 88.26% to 97.08%. These

validation results clearly demonstrate that the SVM-linear

model is superior in terms of both generalization capability

and model transferability.

Large-Scale Classification

The library of 253 pharmaceutical compounds was used to

investigate the capability of the chemometric models to

solve the large-scale classification problem. Several types

of differences were contained in this library. The main

Figure 3. Model validation using different lots of material and different MicroNIR units. (a) Same-unit-same-lot (SUSL) validation;

(b) same-unit-cross-lot (SUXL) validation; (c) cross-unit-cross-lot (XUXL) validation. Unit# denotes the spectrometer number.

T#P# denotes the spectrometer number for training (T#) and the spectrometer number for testing or prediction (P#).

Table 2. Model validation using different lots of materials and

different MicroNIR spectrometers.

Classifier

SUSL SUXL XUXL

AVGa STDb AVG STD AVG STD

SIMCA 100 0 90.93 0.22 83.92 8.92

PLS-DA 99.98 0.06 93.94 1.03 92.69 1.94

LDA 98.49 2.99 93.52 1.32 85.64 7.93

QDA 98.49 2.99 93.55 1.25 85.73 7.91

SVM-rbf 99.72 0.47 98.38 2.33 98.01 2.26

SVM-linear 100 0 99.54 1.14 99.88 0.65

aAVG: Average
bSTD: Standard deviation
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difference was chemical structure, but for some com-

pounds, there were also differences in particle size, potency

and formulation (coated versus uncoated) of the same

materials. The goal was to test if all of these 253 com-

pounds with both chemical and physical differences can

be discriminated simultaneously.

As shown in Figure 4a, the raw spectra of different com-

pounds exhibited broad bands and large variability in shape,

intensity, and baseline over the whole spectral range.

Spectral pretreatment is necessary to eliminate or minimize

variability unrelated to the key spectral features for classi-

fication. The unwanted variation is usually caused by uncon-

trollable physical effects such as non-homogeneous

distribution of the particles, changes in refractive index,

sample packing/density variability, sample morphology, etc.

However, it should be noted that some spectral features

related to physical properties are important here since we

also wanted to differentiate compounds with different

physical properties in addition to chemically different

compounds. Therefore, moderate spectral pretreatment

using Savitzky–Golay first derivative followed by SNV was

selected. As shown in Figure 4b, more resolvable peaks

were observed and the baseline drift was minimized in

the pretreated spectra.

All of the seven models were then applied to the pre-

treated spectra of these 253 compounds. Half of the spec-

tra were used as the training set and the other half was

used as the test set. The results are summarized in Table 3

and the prediction accuracy is compared. Among all of

these models, PLS-DA performed most poorly. A necessary

condition for PLS-DA to work reliably is that each class is

tight and occupies a small and separate volume in X-space

consisting of the multivariate data, which was not satisfied

by our dataset. Experience shows that PLS-DA is more

appropriate with a small number of classes,30 and thus

not suitable for large-scale classification. Moreover, it

took more than 20 hours to build this PLS-DA model in

this work. Linear discriminant analysis (LDA) and QDA

Figure 4. NIR spectra of the training set from 253 pharmaceutical compounds. (a) Raw spectra; (b) pretreated spectra.
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showed excellent performance for this set of data, which can

probably be attributed to good settings of this dataset sat-

isfying the preferred conditions for LDA and QDA, such as

multivariate normal distribution of the class population and

equal co-variances in the classes.31 It only took seconds to

build these models. However, it should be noted that LDA

and QDA did not perform well compared with other models

in terms of model transferability (Table 1, Table 2, and Figure

3). Also, when an additional compound with much less

number of spectra was included (imbalanced dataset), the

performance of LDA and QDA significantly worsened,

while there were only slight changes in prediction success

rate for the other models (data not shown). Soft independent

modeling of class analogy (SIMCA) also performed well for

this dataset. The good performance could be explained by

the special feature of SIMCA that PCA is applied to each

group separately and the number of PCs is selected individu-

ally and not jointly for all groups, which allows for an optimal

dimension reduction in each group in order to reliably classify

new objects.32 However, it took minutes to build the SIMCA

model, much slower than the LDA/QDA models, and model

transferability of SIMCA was among the worst (Table 1, Table

2, and Figure 3).

One of the major features of SVM models is that they

can operate in a kernel-induced feature space allowing both

linear and nonlinear modeling.21,22 In our work, the linear

kernel (SVM-linear) performed well with a prediction suc-

cess rate slightly lower than SIMCA, while the nonlinear

kernel (SVM-rbf) did not perform well. It should be noted

that parameter optimization is often conducted to build a

SVM model, one parameter (C) for the linear kernel and

two parameters (C and g) for the RBF kernel, which usually

involves an exhaustive search algorithm and takes a long

computation time. From the practical perspective, in

order to develop a robust method with minimal model

building time and efforts, we intentionally skipped the par-

ameter optimization procedure to test the SVM models

using the default settings (C¼ 1.0 and g¼ 1/number of vari-

ables). The prediction success rate of 96.57% of the SVM-

linear model was excellent considering that no optimization

was performed, and it only took seconds to build the

model. This good performance of the linear kernel could

be related to the linear relationship between the absorb-

ance and the concentration of the material according to

Beer’s law. In fact if optimization was performed, the per-

formance of SVM-rbf was also excellent whereby the pre-

diction success rate improved from 85.78% to 98.52%.

To further improve the performance of SVM, a hierarch-

ical scheme was applied using the linear kernel (hier-SVM-

linear), again without parameter optimization. With this

approach, the prediction accuracy reached 100%. In pattern

classification, the difference between the probability of

assigning the sample to the winner class (the maximum

probability) and the probability of assigning the sample to

the second place class (the second maximum probability) is

the key for prediction accuracy. In our work, the multi-class

classification was realized by pairwise comparisons, known

as all-pairs approach. The probability was calculated based

on a multi-class probability estimate by combining the pair-

wise class probabilities using the algorithm proposed by Wu

et al.33 The maximum probability and the second maximum

probability of classifying all the samples in the test set are

shown in Figure 5. It can be clearly seen that for all the

spectra, the differences between these two probabilities

were significant, more than 0.33 for all the data except

one of 0.08, indicating the strong discrimination power of

hier-SVM-linear. It also only took seconds to build the hier-

SVM-linear model, slightly longer than the SVM-linear

model though.

External validation was performed to further substanti-

ate the generalization capability of the SVM models. Spectra

from 14 compounds out of the library of 19 compounds,

which are also included in the library of 253 compounds,

were used as the testing set. These 14 compounds are

polysorbate 80, acetaminophen, corn starch, HPC, PVP,

SSG, talc, ascorbic acid, benzocaine, caffeine, HPMC, lac-

tose, Mg-stearate, and TiO2. To be comparable with the

testing sets, for these 14 chemically different materials in

the library of 253 compounds, spectra from multiple com-

pounds of the same chemical structure were consolidated

to remove physical differences. There were 231 classes in

the training set after the consolidation. All of the seven

models were compared in this test. This validation test

represents perhaps the most challenging situation, and

often a real world situation, where a significantly larger

number of classes, including chemically similar compounds

to the compounds in the testing set, were used in the

training set than in the testing set. It should be noted that

the spectra in the testing sets were collected in our lab

using six spectrometers, while the training set was col-

lected from different samples using a different spectrom-

eter (the seventh spectrometer) in a different environment

by one of our external collaborators in the pharmaceutical

industry. Therefore, this external validation test repre-

sented real world application. It can demonstrate not

Table 3. Comparison of different models for classification of the

253 pharmaceutical compounds.

Classifier

No. of

spectra

Prediction

success

rate (%)

No. of missed

predictions

SIMCA 2566 97.54 63

PLS-DA 2566 85.23 379

LDA 2566 99.61 10

QDA 2566 99.73 7

SVM-rbf 2566 85.78 365

SVM-linear 2566 96.57 88

hier-SVM-linear 2566 100 0
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only the predictive power of the model, but also the model

transferability.

The individual prediction success rate using different

spectrometers for the testing sets and the average value

based on all of the six spectrometers for each model are

summarized in Table 4. Support vector machine (SVM)

models have clearly shown outstanding performance in

both predictive power and model transferability. The aver-

age prediction success rates obtained by the three SVM

models (>90% in most cases) were significantly higher

than the other models. Moreover, the good performance

was consistent across different spectrometers. The hier-

SVM-linear model has shown the best performance, with

prediction success rates ranging from 92.85% to 97.92%

across the six spectrometers, which agrees with the results

presented previously. By closely examining the misclassifi-

cation results for the SVM models, we observed that a

majority of the misclassified spectra were predicted as

the classes of chemically similar materials. Among the

other models, PLS-DA performed better. As shown in

Table 4 and Figure 3, PLS-DA exhibited pretty good

model transferability. However, it took very long time

(>20 h) to build the model and the prediction accuracy

was not sufficient for large-scale classification. LDA and

QDA performed very poorly in this validation test.

Successful on-site and in situ pharmaceutical RMID by

NIR requires a robust chemometric model with high pre-

diction success rate, reliable model transfer from instru-

ment to instrument, the capability to handle a large

number of materials with both chemical and physical differ-

ences, as well as short model building time and simple

model settings for easy model building and rebuilding

when necessary. Support vector machine (SVM) modeling,

especially the hier-SVM-linear algorithm, meets all of these

requirements and can be potentially used as a powerful

classification tool in pharmaceutical industry.

Conclusions

In this study, we demonstrated the use of MicroNIR spec-

trometers for NIR-based pharmaceutical RMID and solved

two challenges in this area, model transferability and large-

scale classification. The successful application can be

attributed to the consistent instrument–instrument

Table 4. Model validation using the large-scale classification model to predict samples from different sources with different MicroNIR

units.

Classifier

Ta-Unit7

Pb-Unit1

T-Unit7

P-Unit2

T-Unit7

P-Unit3

T-Unit7

P-Unit4

T-Unit7

P-Unit5

T-Unit7

P-Unit6 AVGc STDd

SIMCA 84.84 76.10 84.75 84.92 85.40 83.90 83.32 3.57

PLS-DA 85.71 85.89 85.00 85.71 85.71 85.69 85.62 0.31

LDA 33.02 31.97 57.75 45.87 67.78 70.57 51.16 16.86

QDA 33.10 32.13 58.33 47.78 68.41 70.73 51.75 16.91

SVM-rbf 91.67 92.08 93.42 90.32 90.79 86.67 90.83 2.30

SVM-linear 92.30 92.95 95.33 92.54 92.38 87.80 92.22 2.44

hier-SVM-linear 94.92 93.03 97.92 95.71 95.56 92.85 95.00 1.89

aT: Training
bP: Prediction
cAVG: Average
dSTD: Standard deviation

Figure 5. Estimation probabilities of class membership.
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performance of MicroNIR spectrometers as well as robust

SVM modeling with accurate classification, excellent

method transferability, fast model building and simple

implementation. With capability of rapid, reliable and non-

destructive analysis, it is highly promising to use the ultra-

compact and portable MicroNIR spectrometers for on-site

and in situ pharmaceutical RMID in order to inspect every

barrel in every shipment of materials used in the manufac-

ture of pharmaceutical drugs for the fulfillment of quality

and safety standards in pharmaceutical industry.
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