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Handheld analytical instruments are becoming more 
common for rapid and non-destructive testing of 
incoming raw materials directly in warehouses, reducing 
the cost and time needed for taking samples to the 
laboratory and quarantining incoming shipments until 
lab testing is complete.

The MicroNIR spectrometer 

The MicroNIR™ spectrometer is a near-infrared 
(NIR) handheld spectrometer tethered to a smart 
tablet and equipped with predictive modeling 
software2 that identifies pharmaceutical 
raw materials. Advantages of the MicroNIR 
spectrometer relative to Raman and Fourier-
transform infrared (FTIR) spectroscopy include: 

•	 NIR spectroscopy does not suffer from  
the fluorescence problem encountered  
in Raman spectroscopy

•	 Measurement time with MicroNIR is  
very fast (<1 second)

•	 MicroNIR measures through plastic  
or glass containers

•	 Light sources are eye safe
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Figure 1. MicroNIR spectrometer tethered to a rugged  
7” Windows 8.1 tablet; the MicroNIR is equipped with  

a vial holder in this image

Raw material identification or verification (of the packaging 
label) is a common quality-control practice. In the pharmaceutical 
industry, the increasing global footprint of the supply chain and 
public health concerns1 resulting from contaminated materials 
(or mislabeling) have driven many regulatory bodies to require 
inspection of every barrel in every shipment of materials used  
in the manufacture of pharmaceutical drugs. 
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This application note reports on a study conducted to demonstrate how the MicroNIR™ 1700 spectrometer2-3 
correctly classifies pharmaceutical raw materials and enables transferring the method from one or more master 
instruments to multiple target instruments. The study compared different classification algorithms to assess the 
number of master instruments needed to achieve 100% accurate prediction. 

In addition to adopting the preferred classification algorithm, successfully transferring methods to target 
instruments depends highly on instruments that are consistent in performance spectrally, optically, and physically3. 
MicroNIR spectrometer technology, when coupled with common chemometric analysis techniques, is highly 
suitable for classification applications in high-volume applications. 

Methodology and Experimental Procedure

The study was conducted in two phases. Phase I consisted of the scanning 
of 19 of the most commonly used pharmaceutical excipients and active 
ingredients to build a classification library. Phase II aimed at providing a robust 
model that could be transferred to a new, “untrained” spectrometer. Spectra of 
all 19 compounds were collected from six instruments with cross-instrument 
validations using soft independent modeling of class analogies (SIMCA), partial 
least squares discriminant analysis (PLS-DA), and support vector machine 
(SVM) classification algorithms. Additionally, data pretreatment algorithms 
to find out the minimal number of spectrometers needed and the best 
combinations (and sequences) of pretreatment schemes for achieving optimal 
prediction performance were also studied. 

The spectra of 19 pharmaceutical materials listed in Table 1 were collected in 
laboratory ambient conditions. All samples were presented to the spectrometer 
housed in 4 mm borosilicate glass vials with measurements performed 
through the bottom of the vials. A vial holder that slips over the end of 
the spectrometer was used by the operator to easily introduce and remove 
samples and also maintain an optimal 3 mm distance between the material 
and the face of the spectrometer. Figure 2 shows a picture of the vial holder  
in use. The vial was rotated approximately 10 to 15 degrees after every scan.  
Each scan had an integration time of 10 ms with spectrum averaged over  
50 collections. Each material was scanned a minimum of five times. 

Figure 2. Experimental setup
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Table 1. 19 pharmaceutical compounds used in the study

Material ID CAS Number Short Names
Acetaminophen 103-90-2 Acetaminophen
Ascorbic acid, L-ascorbic acid 50-81-7 Ascorbic acid
Aspirin 50-78-2 Aspirin
Benzocaine (ethyl-4-aminobenzoate) 94-09-7 Benzocaine
Caffeine 58-08-2 Caffeine
Cellulose 9004-34-6 Cellulose
Corn Starch 9005-25-8 Corn starch
Fructose, D-(−)-fructose 57-48-7 Fructose
HPC, hydroxypropyl cellulose 9004-64-2 HPC
(Hydroxypropyl) methyl cellulose (HPMC) 9004-65-3 HPMC
Ibuprofen 15687-27-1 Ibuprofen
Lactose 63-42-3 Lactose
Magnesium stearate 557-04-0 Mg-stearate
Poly (ethylene oxide) (PEO) powder 25322-68-3 PEO
PVP, polyvidone, polyvinylpyrrolidone, povidone 9003-39-8 PVP
Polysorbate 80 9005-65-6 Polysorbate80
SSG, sodium starch glycolate, Explotab® 9063-38-1 SSG
Talc 14807-96-6 Talc
Titanium dioxide, titanium(IV) oxide 13463-67-7 TiO2

All measurements were collected using MicroNIR Pro spectrometer software version 2.0 (Figure 3). A reference 
measurement was performed on the MicroNIR approximately 15 minutes after the lamps were turned on and every 
hour thereafter while performing scans. A 99% diffuse reflectance panel was used for the 100% reference value and 
the 0% reference value was taken by leaving the tungsten lamps on with an empty vial holder. This scenario was 
used to account for any scattered light from the sample vial holder.

Figure 3. The MicroNIR Pro software home page
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Most of the 19 pharmaceutical compounds were ordered from 2-3 different vendors to increase the coverage 
of samples’ manufacture sources variations. Each compound from each manufacture source was scanned at 
three different dates and ambient temperatures. To study the models’ transfer performance among different 
spectrometers, six spectrometers collected data.

After spectra collection, data was imported into an embedded version of Unscrambler® X software version 10.3 in 
the MicroNIR Pro software for spectral analysis and calibration model development. All spectra were pretreated 
using a Savitzky-Golay first derivative followed by standard normal variate (SNV), also performed within the 
MicroNIR Pro software. Figure 4 is a plot of the first derivate of the spectra of the 19 materials tested. 

Figure 4. Savitzky-Golay first derivative and SNV pre-treated spectral data across 950 – 1650 nm
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Table 2. Pros and cons for each classifier

Classifier Pros Cons
SIMCA Easy to understand,  

implementation is simple 
Difficult to optimize and maintain parameters for each class
Cannot generalize well for heterogeneous structured datasets

PLS-DA Can calculate each  
variable’s contribution

Can run into overfit issues for complicated datasets

SVM
 

Robust and good  
generalization capabilities
 

Implementation is more complicated but commercial software 
packages such as CAMO’s The Unscrambler offers this capability
Cannot calculate each variable’s contribution 

Chemometric Library Development 

Chemometric libraries are predictive and data-driven statistical models that use chemometric and machine-learning 
principles to extract key features and underlying relationships between spectra and their respective known 
identities (training sets). The libraries are used later to predict the same identities of unknown samples (test sets).  
In this study, we investigated the building of such models for pharmaceutical raw materials identification 
applications with spectra data from the MicroNIR 1700 instruments.

We used three types of classification algorithms characterized by specific principles: 

SIMCA4 — a principal component model represents each class in the data set

PLS-DA5 — X- and Y-scores are chosen so that it will seek directions in the factor space that are associated with 
high variations in responses but biasing them toward directions that are accurately predicted

SVM6 — Class boundaries based on maximizing the separation margin between classes: samples at the borders of 
each class play a major role
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Figure 6 shows the partitions of classes in SVM models by the PCA-SVM plot, where the x-axis and y-axis represent 
PC-1 and PC-2 scores and the class decision boundaries were generated by SVM calculations. This gives an overall 
picture of the relative positions of each class and their class boundaries.

Figure 6. PCA-SVM plot for 19 pharmaceutical compounds based on SVM models

Results and Discussion

Figure 5 is the principle component analysis (PCA) score plot showing PC-1 plotted against PC-2. The PCA scores plot 
provides an initial indication of spectral differentiation in the calibration set. Chemically-similar materials tend to 
cluster closer to each other versus chemically different materials.

 Figure 5. PCA scores plot, PC-1 vs. PC-2
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Number of samples in training set
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Figure 7. Model building times for three kinds of classification algorithms vs. sizes of training sets

In this study, and for reference, with two instruments used for the training set, the model building time was about 1 
hour, 100 sec, and 1 sec for PLS-DA, SIMCA, and SVM respectively.

Model Building Times

Different classification algorithms take different amounts of time to build training models. Model building time in 
offline learning cases may not be crucial but if it takes too long to build, it will be difficult to study and optimize 
modeling processes. One key factor in deciding model building time is the size of the training set (number of 
samples in the training set). Figure 7 compares a model’s building time vs. the size of the training set for the three 
types of classification algorithm we studied here. 

Both PLS-DA and SIMCA require optimization of their model parameters (number of PLS factors for PLS-DA and 
number of principal components for each class in SIMCA) through a training set cross-validation process while for 
SVM there is no need for cross validation. As shown in the figure, it will take about 10,000 times longer to train 
PLS-DA vs. SVM and roughly 100 times longer to train SIMCA vs. SVM. It was also estimated that PLS-DA model 
building times increased with a power of about 1.9 vs. sample size and SIMCA increased with a power of about 1.5. 
With SVM, model building times increased almost linearly with training set sample sizes.
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Table 3. Number of spectrometers needed to build robust models

Classification nTU1 nTU2 nTU3 nTU4 nTU5 nTU6 # Units for 100%
SIMCA 97.395 98.851 99.496 99.808 99.961 100 6
PLS-DA 99.664 99.68 99.904 99.961 99.99 100 6
SVM 100 100 100 100 100 100 1

SVM is the preferred model for classifying raw materials. The model has been tested on over 20 different MicroNIR 
spectrometers manufactured over different lots. 100% successful prediction has been achieved every time.

Building Robust Models

With point-of-use NIR applications, it is possible that hundreds of spectrometers will be deployed in the field. It 
is almost impossible to train each spectrometer with the specific dataset of materials it will analyze. The practical 
approach is to collect a few complete sets of spectra covering all variances from chemicals, environmental factors 
(temperatures, humidity), and user variations (path length, for example) from a couple of master spectrometers. 
These models are then transferred to all other target or production spectrometers.

In this study, we collected six libraries of spectral data from six different MicroNIR spectrometers and determined 
how many spectrometers would be needed for building a robust model that will be successful when applied to 
spectrometers that were not part of the training set. When constructing these kinds of consolidated libraries (based 
on spectra collected from more than one spectrometer), a sample selection scheme can drastically reduce the size 
of these training sets. This means less storage space and quicker model building times. 

The study used the Kennard-Stone7 sample selection scheme to select the most representative samples. Table 3 
shows results where nTUx (x=1 to 6) denotes how many spectrometers were used to build training models and the 
remaining spectrometers’ data was used as test set. For example, nTU2 shows average prediction results when any 
two spectrometers were used to build models and the remaining four spectrometers’ data served as a test set. In 
the case of nTU6, since there are only six spectrometers, the training set consisted of samples chosen by Kennard-
Stone algorithm and the remaining samples served as a test set. 

Also shown in the table is the number of spectrometers needed to achieve 100% classification prediction. Based on 
this analysis, for SVM it would only need one spectrometer’s data to achieve perfect prediction while for PLS-DA 
and SIMCA, it would take all six spectrometers’ data to build models to reach 100%. However, even with PLS-DA 
and SIMCA, accurate prediction levels of >98.8% are achieved with only two instruments for training. 
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Conclusion

In this study, we showed that the MicroNIR spectrometer is effective for use in pharmaceutical raw materials 
identification. Three machine learning pattern classification model-building algorithms were tested: SIMCA, PLS-DA, 
and SVM. All delivered near-perfect identification success rates, with increasingly better performance from SIMCA 
to PLS-DA to SVM and correspondingly lower model building times. Model building and transfer with MicroNIR 
Pro software requires minimal time and performs with high reliability. Furthermore, model transfer from a master 
instrument to a number of other instruments is easily achievable due to the high reproducibility of the MicroNIR 
instruments in production. 
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